
 
 

 

UNIVERSIDADE DE SÃO PAULO 

LEONARDO GASPARINI ROMÃO 

 

 

 

 

 

 

 

 

PROCESSO DE DESCRIÇÃO ARQUITETURAL DE SOFTWARE UTILIZANDO 

TÉCNICAS DE ENGENHARIA REVERSA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

São Paulo 

2016



 
 

 

LEONARDO GASPARINI ROMÃO 

 

 

 

 

 

 

 

 

 

PROCESSO DE DESCRIÇÃO ARQUITETURAL DE SOFTWARE UTILIZANDO 

TÉCNICAS DE ENGENHARIA REVERSA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Monografia apresentada ao PECE – 

Programa de Educação Continuada da 

Universidade de São Paulo, como parte 

dos requisitos para obtenção do título 

de Especialista em Tecnologia da 

Informação. 

 

Área de Concentração:  

Tecnologia da Informação 

 

Orientador:  

Prof. Dr. Jorge Luis Risco Becerra 

 

 

São Paulo 

2016



 
 

 

 

FICHA CATALOGRAFICA 

 

 

Romão, Leonardo Gasparini 
 Técnicas de engenharia reversa em um processo de descrição arquitetural – 
São Paulo, 2015; 
 Nº de páginas: 94 
 
 Monografia (MBA em Tecnologia da Informação) - Escola Politécnica da 
Universidade de São Paulo. Programa de Educação Continuada em Engenharia. 
 
 Orientador: Prof. Dr. Jorge Luis Risco Becerra. 
 
 1.Arquitetura de Software; 2. Engenharia Reversa; 3. Descrição Arquitetural 
 



 
 

 

AGRADECIMENTOS 

Agradeço primeiramente ao Grupo de Fábrica de Software do Laboratório de 

Tecnologia de Software por me dar a chance de realizar o curso do MBA e ao 

professor Jorge Luis Risco Becerra por todo o esforço na orientação deste trabalho, e 

agradeço também aos meus pais, aos professores Ana Claudia Rossi, Juan Felipe 

Restrepo Naranjo e Leonardo Dominguez Dias, aos meus amigos Laryssa Machado 

e Íris Xavier, à Ana A. Wertzner e todas as pessoas que me ajudaram a fazer este 

trabalho.  



 
 

 

RESUMO 

A arquitetura de software tem se tornado um fator cada vez mais importante 

para o desenvolvimento e evolução de novos softwares, tanto pelo fato de alinhar o 

software ao modelo de negócio ao qual ele está inserido, como também para criar 

sistemas que sejam adaptáveis as rápidas e constantes mudanças do negócio. 

Apesar de sua importância, a documentação arquitetural não é um item priorizado 

pelas equipes de desenvolvimento de software, como equipes de desenvolvimento de 

softwares open-source. 

Analisando os softwares de código aberto, tanto as organizações que 

trabalham para evoluir o software, como as equipes que adaptam ou realizam 

manutenções nestes softwares não criam ou não disponibilizam informações 

arquiteturais do sistema, nem utilizam um processo especifico de adaptação baseado 

em arquitetura, e técnicas que permitam esta evolução de forma que não corrompa 

sua arquitetura. 

Para realizar modificações no software, é comum que as equipes gastem tempo 

entendendo o software analisando seu código fonte, fazendo com que os 

desenvolvedores tenham um conhecimento especializado. Entretanto, outros 

envolvidos no projeto e novos integrantes da equipe terão dificuldade de compreensão 

do sistema, pois não possuem este conhecimento, para isso, uma forma de 

compreender o sistema, de forma que outras partes possam discutir sobre, é utilizar 

a engenharia reversa para criar modelos que representem o código fonte, para que 

seja possível que as discussões sobre o sistema sejam mais efetivas. 

Este trabalho visa propor um processo para construir uma descrição 

arquitetural contendo modelos que representem a arquitetura do software. A 

metodologia para construção deste trabalho foi primeiro identificar as informações 

necessárias e os modelos necessários para construir uma descrição arquitetural na 

visão computação. Em seguida, foi necessário construir um processo baseando nos 

requisitos da primeira fase do modelo Horseshoe, aplicando 3 técnicas de engenharia 

reversa no software: Uma técnica para obter um diagrama de classes, uma técnica 

para obter um diagrama de caso de uso e uma técnica para obter um diagrama de 

sequência e por último, aplicar o processo para construir uma descrição arquitetural 

de um e-commerce de código aberto.  



 
 

 

 

 

ABSTRACT 

 

Software architecture has become an increasingly important factor for the 

development of new software, both because of aligning the software to the business 

model to which it is inserted, as well as to create systems are adaptable to the rapid 

and constant business changes. Despite its importance, the architectural 

documentation is not an item prioritized by software development teams, as open-

source development teams. 

Analyzing the context of open-source software, both organizations working to 

evolve the software, as well as the teams that adapt or perform maintenance on these 

software do not create or provide architectural information system, nor utilize a specific 

adaptation process based on architecture, and techniques that allow this development 

in a way that doesn't corrupt its architecture. 

To make changes to the software, it is common that teams spend time studying 

and understanding the software's source code, so that developers have a specialized 

knowledge. However, other people involved in the project and new team members will 

find it difficult to comprehend on the system, because they do not have this knowledge, 

for it is a way to understand the system, so that other parties can discuss, is to use 

reverse engineering to create models representing the source code, so it's possible 

that the discussions about the system be more effective. 

This paper aims to propose a process to create these models representing the 

system architecture. The methodology for the construction of this paper was first 

identify the necessary information and models to create an architectural description in 

computational viewpoint. Second, it was necessary to create a process thought the 

first phase of horseshoe model applying three software reverse engineering 

techniques: A technique to recover a class diagram, a technique to recover an use 

case diagram, a technique to recover a sequence diagram, and for last , apply the 

process to create an architectural description of an open-source ecommerce



 
 

 

SUMÁRIO 

 

1 INTRODUÇÃO ................................................................................................... 14 

1.1 Contexto ......................................................................................................... 14 

1.2 Problema ........................................................................................................ 15 

1.3 Objetivo .......................................................................................................... 16 

1.4 Justificativa .................................................................................................... 16 

1.5 Metodologia ................................................................................................... 17 

1.6 Estrutura do Trabalho ................................................................................... 18 

2 A ENGENHARIA REVERSA E ARQUITETURA DE SOFTWARE .................... 20 

2.1 Engenharia Reversa ...................................................................................... 20 

2.1.1 Definição e Objetivos ................................................................................ 20 

2.1.2 Técnicas .................................................................................................... 21 

2.2 Arquitetura de Software ................................................................................ 23 

2.2.1 Definição e Objetivos ................................................................................ 23 

2.2.2 Elementos Arquiteturais ............................................................................ 24 

2.3 Descrição Arquitetural .................................................................................. 24 

2.3.1 Definição e aplicações .............................................................................. 24 

2.3.2 Visões ....................................................................................................... 26 

2.3.3 Modelos Arquiteturais ............................................................................... 27 

2.3.4 Correspondência ....................................................................................... 28 

2.3.5 Regra de Correspondência ....................................................................... 28 

2.3.6 Lógica arquitetural .................................................................................... 28 

2.3.7 Atributos de qualidade .............................................................................. 29 

2.4 UML4ODP ....................................................................................................... 30 



 
 

 

2.4.1 Linguagens de descrição arquitetural ....................................................... 30 

2.4.2 Contexto .................................................................................................... 31 

2.4.3 Pontos de Vista ......................................................................................... 31 

2.5 Relação entre a engenharia reversa e a arquitetura de software. ............. 34 

3 PROCESSO DE DESCRIÇÂO ARQUITETURAL .............................................. 37 

3.1 Etapa 1: Engenharia reversa para recuperação de Modelos ..................... 40 

3.1.1 Engenharia reversa de esquemas relacionais para esquemas orientado 

à objetos................................................................................................................... 41 

3.1.1.1. Definição da técnica .................................................................................. 41 

3.1.1.2. Aplicação da técnica ................................................................................. 43 

3.1.2 Engenharia reversa para recuperação de diagramas de caso de uso .. 47 

3.1.2.1. Definição da técnica .................................................................................. 47 

3.1.2.2. Aplicação da Técnica ................................................................................ 49 

3.1.3 Engenharia reversa para recuperação de diagramas de sequência ...... 51 

3.1.3.1. Definição da técnica .................................................................................. 51 

3.1.3.2. Aplicação da Técnica ................................................................................ 52 

3.2 Etapa 2: Construção de uma descrição arquitetural .................................. 55 

3.2.1 Construir Modelos da Visão Computação ............................................... 58 

3.3 Conclusão do capitulo .................................................................................. 61 

4 ROTEIROS DO PROCESSO ............................................................................. 62 

4.1.1 Aplicação do Processo e Especificação do Roteiro ............................... 63 

4.1.2 Roteiro da recuperação do esquema orientado a objetos ..................... 64 

4.1.3 Roteiro para recuperação de diagrama de caso de uso ......................... 69 

4.1.4 Roteiro para recuperação de diagrama de sequência ............................ 70 



 
 

 

4.1.5 Roteiro para construção de uma descrição arquitetural. ....................... 72 

4.1.6 Roteiro para especificação da visão computação .................................. 73 

4.1.7 Resultados Obtidos ................................................................................... 75 

5 CONCLUSÕES .................................................................................................. 77 

REFERÊNCIAS BIBLIOGRÁFICAS ......................................................................... 79 

APENDICE A – DESCRIÇÃO ARQUITETURAL ARQUITETURA COMPUTACIONAL 

PARA SISTEMA DE ECOMMERCE. ........................................................................ 81 

 



 
 

 

LISTA DE FIGURAS 
 

Figura 1 - Diferença entre engenharia tradicional e engenharia reversa. .................. 21 

Figura 2 - Modelo Conceitual da descrição arquitetural ............................................ 26 

Figura 3 - Qualidade de uma descrição arquitetural eficiente ................................... 29 

Figura 4 - Pontos de Vista do RM-ODP .................................................................... 32 

Figura 5 - Adaptação do modelo Horseshoe para o modelo proposto ...................... 38 

Figura 6 - Processo de construção de uma descrição arquitetural de sistemas através 

da engenharia reversa .............................................................................................. 39 

Figura 7 - Etapas do processo de engenharia reversa .............................................. 41 

Figura 8 - Processo de recuperação do esquema orientado a objetos ..................... 43 

Figura 9 - Algoritmo de Recuperação de Diagramas de Caso de Uso ...................... 48 

Figura 10 - Processo de recuperação de diagramas de caso de uso ....................... 50 

Figura 11 - Processo de recuperação de diagrama de sequência ............................ 53 

Figura 12 - Processo de contrução da descrição arquitetural ................................... 57 

Figura 13 - Processo de construção da visão computação ....................................... 58 

 

 



 
 

 

LISTA DE TABELAS 
 

Tabela 1 - Descrição da atividade "Construir a lista de tabelas do esquema relacional”

 .................................................................................................................................. 44 

Tabela 2 - Descrição da atividade "Identificar Classes de Objetos ........................... 44 

Tabela 3 - Descrição da atividade "Identificar Associações" ..................................... 44 

Tabela 4 - Descrição da atividade "Identificar Heranças" .......................................... 45 

Tabela 5 - Descrição da atividade "Identificar Agregações" ...................................... 45 

Tabela 6 - Descrição da atividade “Identificar Cardinalidades” ................................. 46 

Tabela 7 - Descrição da atividade "Construir o esquema orientado à objetos" ......... 46 

Tabela 8 - Descrição da atividade "Gerar código abstrato da classe" ....................... 50 

Tabela 9 - Descrição da atividade "Aplicar algoritmo de recuperação de caso de uso"

 .................................................................................................................................. 51 

Tabela 10 - Descrição da atividade "Construir diagrama de caso de uso" ................ 51 

Tabela 11 - Descrição da atividade "Transformar método em código abstrato" ........ 53 

Tabela 12 - Descrição da atividade "Construir código OFG do código abstrato" ...... 54 

Tabela 13 - Tabela de perfil de conceitos ODP e UML ............................................. 55 

Tabela 14 - Descrição da atividade "Construir descrição arquitetural" ...................... 57 

Tabela 15 - Descrição da atividade "Construir uma estrutura da visão computação"58 

Tabela 16 - Descrição da atividade "Construir o diagrama de template de objetos" . 59 

Tabela 17 - Descrição da atividade "Construir o diagrama de templates de interfaces"

 .................................................................................................................................. 59 

Tabela 18 - Descrição da atividade "Construir o diagrama de assinaturas" .............. 60 

Tabela 19 - Descrição da atividade "Construir diagrama de tipo de dados" .............. 60 

Tabela 20 - Descrição da atividade "Construir o diagrama de comportamento da 

assinatura" ................................................................................................................ 61 

Tabela 21 - Descrição do roteiro da atividade "Construir a lista de tabelas do esquema 

relacional" .................................................................................................................. 64 

Tabela 22 - Descrição do roteiro da atividade "Identificar classes de objetos" .......... 65 

Tabela 23 - Descrição do roteiro da atividade "Identificar associações" ................... 66 

Tabela 24 - Descrição do roteiro da atividade "Identificar Heranças" ........................ 67 

Tabela 25 - Descrição do roteiro da atividade "Identificar Agregações" .................... 67 

Tabela 26 - Descrição do roteiro da atividade "Identificar cardinalidades" ................ 68 



 
 

 

Tabela 27 - Descrição do roteiro da atividade "Construir esquema orientado à objetos"

 .................................................................................................................................. 69 

Tabela 28 - Descrição do roteiro da atividade "Gerar código abstrato" ..................... 69 

Tabela 29 - Descrição do roteiro da atividade "Executar algoritmo de recuperação de 

caso de uso" .............................................................................................................. 70 

Tabela 30 - Descrição do roteiro da atividade "Gerar código abstrato" ..................... 70 

Tabela 31 - Descrição do roteiro da atividade "Gerar diagrama de fluxo de objetos" 71 

Tabela 32 - Descrição do roteiro da atividade "Construir diagrama de sequência" ... 71 

Tabela 33 - Descrição da atividade "Construir descrição arquitetural" ...................... 72 

Tabela 34 - Descrição do roteiro da atividade "Construir estrutura da visão 

computação" ............................................................................................................. 73 

Tabela 35 - Descrição do roteiro da atividade "Construir o diagrama de template de 

objetos" ..................................................................................................................... 73 

Tabela 36 - Descrição do roteiro da atividade "Construir o diagrama de assinaturas"

 .................................................................................................................................. 73 

Tabela 37 - Descrição do roteiro da atividade "Construir o diagrama de tipo de dados"

 .................................................................................................................................. 74 

Tabela 38 - Descrição do roteiro da atividade "Construir o diagrama de 

comportamento" ........................................................................................................ 75 

 

 



 
 

 

LISTA DE ABREVIATURAS E SIGLAS 
 

RM-ODP Reference Model – Open Distribuíted Systems 

MVC Model-View-Controller 

BPMN Business Process Model Notation 

UML Unified Modeling Language 

SQL Structured Query Language 

OFG Object Flow Graph 

UML4ODP Use of UML for ODP system  

 

 



14 
 

 

1 INTRODUÇÃO 
 

1.1  Contexto 
 

Os modelos de negócio das organizações mudam rapidamente e constantemente, 

para se manter no mercado com novas oportunidades de negócio. Com isso, a 

capacidade de evoluir um software para adequá-lo as mudanças dos modelos de 

negócio organizacionais em um curto tempo é uma necessidade crítica das 

organizações, tendo em vista que, os softwares tornaram-se uma das principais 

ferramentas de apoio aos modelos de negócios das organizações. De acordo com 

Breivold, Crnkovic e Larsson (2012), há muito tempo, as organizações concentram os 

custos do ciclo de vida do software na evolução, para atender as mudanças de 

requisitos e novas oportunidades de negócio.  

Softwares precisam ser adequados rapidamente para atender o seu papel na 

organização e ser relevante aos stakeholders. Um exemplo de sistemas que possuem 

a necessidade de se adaptar rapidamente são sistemas de comércio eletrônico, que 

segundo Laguna e Hernandez (2010), o domínio de aplicações como um e-commerce 

necessitam de funções gerais com variações específicas para cada organização, 

sendo assim, estes softwares precisam de uma estrutura que seja modificável. 

Para que um software tenha a capacidade de apoiar modelos de negócio que 

mudam frequentemente, sua arquitetura precisa ser adaptável, pois segundo a 

afirmação de Breivold, Crnkovic e Larson (2012), a arquitetura é a base de qualquer 

software, sendo assim, um sistema rígido que não leva as mudanças em 

consideração, não acompanha as mudanças do modelo de negócio de sua 

organização e tende a morrer pois o software não atenderá mais ao seu propósito e 

perderá sua utilidade. 

Para implementar mudanças no software, é necessário entender como o 

software está estruturado, sendo assim, é preciso entender a arquitetura do software. 

Segundo Breivold, Crnkovic e Larsson (2012), a análise arquitetura possibilita evoluir 

um software adequadamente ao ambiente organizacional que ele está inserido. 

Entretanto, entender a arquitetura de um software geralmente é uma tarefa difícil, pois 

segundo Chadha (2014), apesar de existirem princípios que auxiliam a entender como 



15 
 

 

o software foi construído como abstração, modularização e a engenharia reversa, as 

técnicas que são criadas a partir destes princípios são limitadas a entender o código 

fonte de um software, e não sua arquitetura. 

Para analisar a arquitetura de um software, é necessário que existam modelos 

que representem várias visões do software, permitindo uma análise mais ampla e 

menos detalhada que o código fonte. Entretanto, a maioria das equipes de 

desenvolvimento não criam estes modelos, ou não utilizam um padrão para a 

construção de modelos arquiteturais. Dentro deste cenário estão as equipes de 

desenvolvimento de projetos de código aberto. Ding et al (2014) apresentou uma 

pesquisa em que, entre 2000 projetos de código aberto, apenas 108 possuíam alguma 

documentação referente a arquitetura de software e desses projetos, muitos não 

tinham uma estrutura ou não estavam detalhados de forma adequada, pois 88.9% 

destes projetos utilizavam uma linguagem informal. 

 

1.2 Problema 
 

Como consequência da falta de documentação arquitetural adequada em 

projetos open-source, saber se um software atende as necessidades do modelo de 

negócio se torna uma tarefa complexa, porque de acordo com Ding et al (2014), 

modelos arquiteturais permitem guardar informações de decisão do projeto que 

tenham relação com o modelo de negócio e fornecer informações entre os 

stakeholders para contribuir com a arquitetura. 

A falta de uma descrição arquitetural torna-se um obstáculo para modificar um 

software, porque é incerto saber os pontos de impacto necessários para adicionar uma 

nova funcionalidade sem danificar a arquitetura do software. Para passar este 

obstáculo, Laguna e Hernandez (2010) afirmam que são necessários modelos que 

expressem a arquitetura de um software possibilitando rastrear as características e o 

impacto das modificações em um software ao adicionar uma nova função.  

Portanto, é um desafio para as equipes de desenvolvimento evoluir um software 

de código aberto sem danificar a arquitetura, porque o código fonte é o único artefato 

que expressa fielmente a atual arquitetura de um software de código aberto, portanto, 

o problema abordado nesta monografia é a necessidade de compreender estes 



16 
 

 

softwares através de modelos que representem sua arquitetura para auxiliar sua 

evolução para adequa-lo a diferentes ambientes no qual será inserido. 

1.3  Objetivo 
 

O objetivo deste trabalho é propor um processo de construção de uma 

descrição arquitetural de softwares na visão computação do modelo RM-ODP. Este 

processo utiliza diferentes técnicas de engenharia reversa em diferentes fases do 

processo para abstrair modelos do código fonte de um sistema de código aberto que 

forneçam informações que serão utilizadas para descrever a arquitetura do software. 

O Segundo passo, é realizar a descrição de um processo para descrever uma 

arquitetura do software na visão computação, utilizando o framework UML4ODP como 

modelo para construir a descrição arquitetural que usa as informações recuperadas 

do software no primeiro passo mais as informações do ambiente no qual ele será 

inserido. A escolha do UML4ODP como linguagem de especificação é que por utilizar 

diagramas UML para modelar a arquitetura, serão modelos que provavelmente serão 

mais precisos ao serem analisados por um stakeholder e construídos por um 

desenvolvedor. 

1.4 Justificativa 
 

Para Breivold, Crnkovic e Larson. (2012), é um requisito de qualidade muito 

forte um software em que sua arquitetura seja capaz de apoiar um modelo de negócio 

que muda rapidamente. De acordo com os autores, uma organização que possuí 

softwares que são ineficientes em evoluir, consequentemente irá perder 

oportunidades de negócio.  

Segundo Chadha (2014), os modelos que representam a arquitetura de 

software são considerados artefatos importantes para sua evolução, porque para 

evoluir um software, mesmo que possua uma arquitetura fácil de evoluir, é necessário 

entender sua arquitetura para saber os pontos de impacto quando as alterações forem 

implementadas. 

Entretanto, as conclusões feitas pelo trabalho de Ding et al (2014) indicam que 

na maioria das comunidades de software de código aberto, a documentação 



17 
 

 

arquitetural não é bem vista, porque muitas comunidades são compostas por pessoas 

que em alguns casos são freelancers que possivelmente não tiveram o treinamento 

adequado e não precisam seguir padrões corporativos, além disso, os resultados da 

pesquisa mostram que em muitos casos não foi utilizado em nenhum momento 

linguagens de descrição arquitetural. Portanto, estas conclusões contradizem a 

adoção da engenharia de software tradicional e a documentação destes projetos não 

são suficientes para entender o software e sua arquitetura. 

 Segundo a ISO/IEC 14764 (2006), quando a documentação é insuficiente e o 

código fonte é o único artefato para manutenção do sistema, é recomendado realizar 

a engenharia reversa. Tonella (2005), apresenta uma técnica de engenharia reversa 

em softwares orientados a objetos para construção de modelos UML, pois são 

modelos mais convencionais utilizados pelas equipes de desenvolvimento de 

software. 

Porém, a UML por si só é limitada para construir modelos arquiteturais. Mesmo 

assim, a UML era adaptada por diversas equipes que utilizavam a linguagem para 

representar a arquitetura dos sistemas. Com a grande demanda em utilizar a UML 

para representar arquitetura de softwares, foi criado o UML4ODP ou Uso da UML para 

Especificação de Sistemas ODP e a ISO/IEC 19703, permitindo criar modelos 

arquiteturais utilizando a UML (Vallecilo, 2011).  

A parte da visão computação deste padrão será utilizada neste trabalho, 

porque, utilizar linguagens de descrição arquitetural, padroniza os modelos 

arquiteturais, facilitando o entendimento entre diferentes stakeholders. 

 

1.5  Metodologia 
 

Este trabalho terão as seguintes fases: 

1. Primeira Fase: Levantamento bibliográfico dos assuntos necessários para 

desenvolvimento do trabalho.  

2. Segunda Fase: Montar o processo de construção arquitetural utilizando 

técnicas de engenharia reversa e especificação de arquitetura de software 

analisadas durante a fase um, e utilizar as normas ISO/IEC 19793, ISO/IEC 



18 
 

 

14794 e a ISO/IEC 42010, como base para criar os artefatos necessários 

para obter uma descrição arquitetural. 

3. Terceira Fase: Aplicação do processo em um software de comércio 

eletrônico que será inserido dentro de uma organização, apresentando seus 

desafios, necessidades e objetivos e como o trabalho pretende contribuir 

sobre este cenário. 

4. Quarta fase: Contextualização e aplicação do processo construído e 

apresentar os resultados. 

5. Quinta fase: Considerações finais e trabalhos futuros. 

1.6  Estrutura do Trabalho 
 

Esta monografia está organizada nos seguintes capítulos: 

No capítulo 1, é apresentado a introdução deste trabalho, contextualizando o 

escopo em que este trabalho utiliza, a definição do problema deste cenário, o objetivo 

deste trabalho que é propor uma solução do problema definido, e a justificativa de 

trabalho, apresentando sua contribuição para a literatura. 

O capitulo 2 apresenta os conceitos dos assuntos abordados neste trabalho, 

para fundamentação teórica para a proposta de solução que será apresentada, entre 

os assuntos abordados estão: 

 Engenharia Reversa; 

 Arquitetura de Software;  

 Descrição Arquitetural; 

 Framework UML4ODP; 

A partir do capitulo 3, é descrito o processo com as atividades e tarefas 

especificado na linguagem BPMN, para resolução do problema apresentado no 

primeiro capítulo.  

O capitulo 4 apresenta o roteiro operacional do processo apresentado no 

capitulo 3. Os resultados que são obtidos a partir da aplicação deste roteiro é a 

descrição arquitetural apresentada no apêndice deste trabalho. 

Por último, o capítulo 5, apresenta a conclusão deste trabalho, mostrando 

considerações dos resultados que foram obtidos e trabalhos futuros sobre este 



19 
 

 

estudo, seguido pelo apêndice contento a descrição arquitetural resultante deste 

trabalho. 

   



20 
 

 

2 A ENGENHARIA REVERSA E ARQUITETURA DE SOFTWARE  

2.1 Engenharia Reversa 

2.1.1 Definição e Objetivos 

 

Segundo a ISO/IEC 14764 (2016), a engenharia reversa é a recomendação 

para documentar softwares quando o código fonte é a representação mais precisa que 

se possuí. A engenharia reversa é necessária, pois softwares que possuem um longo 

tempo de vida sofrem mudanças para atender novos requisitos de negócio, o que faz 

com que estes softwares sejam diferentes do projeto inicial que foi pensado, mas a 

documentação destes softwares não é criada ou atualizada quando há mudanças. 

Tripathy e Naik (2014) afirmam que existem fatores que implicam na necessidade de 

realizar a engenharia reversa, estes fatores são: 

 Os programadores originais deixaram a organização; 

 A linguagem de implementação se tornou obsoleta, sendo necessário 

migrar para uma nova linguagem; 

 Não há documentação suficiente sobre o sistema; 

 O modelo de negócio da organização depende do software, e muitas 

pessoas não sabem como o software funciona; 

 A empresa adquiriu o sistema como parte de uma aquisição maior e 

carece de acesso ao código fonte inteiro; 

 O sistema requer modificações ou melhorias; 

 O sistema não opera como o esperado; 

Já para Pereira, Martinez e Favre (2011), a engenharia reversa é o processo 

de analisar artefatos de software disponíveis como requisitos, modelos ou códigos 

para extrair informações e construir modelos amplos que estejam coerentes com o 

código fonte. A figura 1 apresenta a diferença entre a engenharia reversa e as 

metodologias tradicionais de desenvolvimento de software. 

 



21 
 

 

Figura 1 - Diferença entre engenharia tradicional e engenharia reversa. 

 

Fonte: Adaptado de Tripathy e Naik (2014). 

 

Conforme a figura mostra, os modelos tradicionais de desenvolvimento 

possuem um processo de implementar o código fonte a partir de uma documentação 

composta por modelos construídos de acordo com os requisitos identificados. Já a 

engenharia reversa possuí um processo ao contrário, onde a partir do código fonte, 

são recuperadas informações para documentar um software através da construção de 

modelos arquiteturais ou requisitos de software. 

De acordo com Tripathy e Naik (2014), tanto o processo de engenharia 

tradicional de software e o processo de engenharia reversa são separadas em três 

etapas principais: 

 Requisitos, onde é definido o que o software deve fazer; 

 Modelos, onde é definida a estrutura do software; 

 Implementação, onde é construído o código fonte, e a realização dos 

testes; 

 

2.1.2 Técnicas  

Segundo Tripathy e Naik (2014), as técnicas que são utilizadas para a engenharia 

reversa são: 

 Análise Léxica: É o processo de analisar uma ou mais instruções de um código 

fonte, para identificar operações, números, símbolos e palavras reservadas. A 

Recuperação 

de Modelos 

Recuperação 

de modelos 

Engenharia 

Reversa 

Engenharia 

Reversa 

Engenharia 

Tradicional 

Implementação Requisitos Modelos 

Engenharia 

Tradicional 



22 
 

 

análise léxica é realizada por um compilador, transformando os caracteres 

inseridos em tokens que sejam referentes à gramatica que o compilador 

entenda e possa realizar a análise sintática. Esta técnica auxilia a primeira 

etapa do processo de engenharia reversa, identificando a estrutura de uma 

instrução; 

 Analise Sintática: É a forma mais complexa de automatizar a análise de um 

programa é analisar sua sintaxe. Compiladores analisam se os tokens criados 

a partir da análise léxica estão de acordo com a gramatica pré-definida no 

compilador. Esta técnica permite identificar declarações e expressões de uma 

instrução, Esta técnica auxilia a primeira etapa do processo de engenharia 

reversa, identificando a gramatica de uma instrução; 

 Analise de Fluxo de Controle: É a técnica utilizada para analisar 

estaticamente qual a sequência de instruções de um código fonte. Esta técnica 

auxilia a segunda etapa do processo de engenharia reversa, identificando o 

fluxo de instruções que formam uma função; 

 Analise de Fluxo de Dados: É utilizado para analisar como os dados são 

transformados entre as entradas e saídas de instruções e funções. Segundo 

Pereira, Martinez e Favre (2011), Autores adaptaram a técnica de fluxo de 

dados para gerar diagramas UML como diagramas de classe, objeto, iteração, 

estado e pacotes. Esta técnica auxilia a primeira segunda e terceira etapa do 

processo de engenharia reversa, identificando as entradas e saídas entre 

instruções e funções; 

 Divisão do programa: É a técnica para dividir linhas de instrução de um código 

fonte para melhorar visualmente sua estrutura e compreensão, essa analise 

separa uma função em partes contendo uma série de instruções, caso seja 

necessário modificar apenas parte da função. Esta técnica auxilia a primeira e 

quinta etapa do processo de engenharia reversa, separando as instruções em 

funções e funções em aplicações; 

 Visualização: Essa técnica é utilizada para representar graficamente o 

software, sendo utilizada principalmente para apresentar componentes e como 

estes componentes estão ligados. Esta técnica auxilia a quinta e sexta etapa 

do processo de engenharia reversa, identificando as aplicações e os 

componentes do software; 



23 
 

 

 Métricas de software: Essa técnica é utilizada controlar o processo de 

engenharia de software de um código fonte, medindo elementos como 

complexidade ciclomática e pontos por função. Em linguagens orientadas a 

objetos, outras métricas foram criadas, sendo elas: 

o Números de métodos por classe. 

o Responsabilidade da classe 

o Falta coesão nos métodos de uma classe 

o Acoplamento entre objetos de uma classe 

o Profundidade da arvore de herança 

o Número de classes filho de uma classe; 

Esta técnica auxilia a quinta e sexta etapa do processo de engenharia de 

software, servindo como medidas para avaliar as aplicações e a arquitetura de 

um software. 

 

2.2 Arquitetura de Software 

2.2.1 Definição e Objetivos 

 

Segundo a ISO/IEC 42010 (2011), a arquitetura de um software consiste nos 

conceitos fundamentais ou propriedades de um sistema em seu ambiente incorporado 

em seus elementos, relações e nos princípios da sua concepção e evolução. Segundo 

a norma, apesar de não existir uma simples definição sobre quais são os conceitos 

fundamentais de um software, a norma afirma que eles podem ser: 

 Elementos ou componentes de um software; 

 Como os elementos do sistema são organizados e relacionados; 

 Princípios da organização ou construção do software; 

 Princípios que governam a evolução do software ao longo do seu ciclo 

de vida. 

Para Rozansky e Woods (2005), todo software possuí uma arquitetura, 

entretanto isso não significa que toda arquitetura de um software está documentada, 

de fácil compreensão ou de acordo com as necessidades dos stakeholders. 

 



24 
 

 

2.2.2 Elementos Arquiteturais 

 

Segundo Rozansky e Woods (2005), Elementos arquiteturais são itens 

fundamentais que devem ser considerados na construção de um sistema, tais como 

bibliotecas, subsistemas ou até mesmo outros sistemas, sendo que, eles precisam ter 

uma série de responsabilidades, interfaces, serviços e limites claramente definidas. 

Um elemento arquitetural deve possuir os seguintes atributos chaves: 

 Uma série de responsabilidades claramente definidas 

 Um limite claramente definido 

 Uma série de interfaces claramente definidas que caracterizem os 

serviços que um elemento arquitetural fornece a outros elementos 

arquiteturais 

 

 

2.3 Descrição Arquitetural 

2.3.1 Definição e aplicações 

 

Uma descrição arquitetural é o produto de trabalho que expressa a arquitetura 

de um software (ISO/IEC 42010: 2011). De acordo com a norma, a descrição 

arquitetural é um artefato, que contribui no entendimento do propósito de um sistema 

e as principais propriedades referentes ao seu comportamento, composição e 

evolução, pois são fatores que afetam questões como a viabilidade, utilidade e 

manutenção do sistema. 

Para Rozanky e Woods (2005), a arquitetura de um software pode ser 

complexa, e a descrição arquitetural é usada para descrever a arquitetura de uma 

forma que seja possível entender esta complexidade. Sendo assim, qualquer artefato 

que é utilizado para auxiliar a apresentação da arquitetura aos stakeholders, faz parte 

de uma descrição arquitetural. 

Segundo a ISO/IEC 42010 (2011) as descrições arquiteturais são usadas pelos 

stakeholders para criar, utilizar e gerenciar a construção, funcionamento e evolução 

de softwares para melhorar a comunicação e cooperação, habilitando os envolvidos 



25 
 

 

no projeto a trabalhar de forma integrada e visualmente util. As descrições não estão 

limitadas entre os exemplos de utilização informados pela norma. Alguns dos 

exemplos fornecidos de utilização de descrições arquiteturais são: 

 Base do modelo do Sistema e atividades de desenvolvimento; 

 Base para analisar e validar alternativas de implementação da arquitetura; 

 Documentação para desenvolvimento e manutenção; 

 Documentar aspectos essenciais de um sistema como uso e ambiente 

envolvido; 

 Princípios, premissas e restrições para guiar futuras mudanças; 

 Pontos de flexibilidade e limitações do sistema com relação a futuras 

mudanças; 

 Decisões arquiteturais, suas justificativas e implicações; 

 Comunicação entre partes envolvidas sobre o desenvolvimento, produção, 

implantação, operação e manutenção de um sistema; 

 Comunicação entre clientes, adquirentes, apoiadores e desenvolvedores como 

parte do contrato de negociações; 

 Base para revisão, analise e validação de um sistema através de seu ciclo de 

vida; 

 Planejar para transição de uma arquitetura legada para uma nova arquitetura; 

 Apoio para atividades de planejamento, agendamento e cobrança; 

A figura 2 apresenta o modelo conceitual da descrição arquitetural. 

 



26 
 

 

Figura 2 - Modelo Conceitual da descrição arquitetural 

 

Fonte: ISO/IEC 42010 

 

De acordo com a figura, uma arquitetura de software é diferente de uma 

descrição arquitetural, sendo uma descrição arquitetural um produto de trabalho, 

composto por conceitos e propriedades, que expressam a arquitetura de um software 

exibida pelo sistema. Cada um dos elementos do modelo conceitual são elementos 

que quando analisados para entender a arquitetura de um sistema, são úteis para a 

construção de uma descrição arquitetural. 

 

2.3.2 Visões 

Segundo a norma ISO/IEC 42010 (2011), uma visão é uma maneira de se 

representar um sistema através de modelos que atendam determinadas 

preocupações dos stakeholders. Para Rozansky e Woods (2005), não é possível 



27 
 

 

capturar as características funcionais e propriedades de qualidade de um sistema 

complexo com apenas um único modelo que seja entendido e útil por todos os 

stakeholders. Para isso, uma arquitetura é descrita em visões separadas, porém 

relacionadas entre si, sendo que cada visão analisa aspectos e problemas diferentes 

de uma arquitetura. 

 

Pontos de Vista 

De acordo com a ISO/IEC 42010 (2011), um ponto de vista são conceitos e 

padrões que um modelo arquitetural deve seguir para representar adequadamente 

uma visão. Uma visão endereça uma ou mais preocupações dos stakeholders de 

forma que estejam de acordo com um ponto de vista. Um ponto de vista deve 

especificar os seguintes itens:  

 Um ou mais interesses estruturados pelo ponto de vista; 

 stakeholders genéricos para os interesses estruturados pelo ponto de vista; 

 Um ou mais tipos de modelos usados neste ponto de vista; 

 Para cada modelo identificado, as linguagens, notações, convenções, 

técnicas de modelagem, métodos analíticos e/ou outras operações para ser 

usadas em um modelo deste tipo; 

 Referencias para suas fontes; 

  

 Para Vallecilo et al. (2011), os pontos de vista têm o propósito de quebrar a 

complexidade de especificar um sistema em peças separadas, utilizando técnicas 

diferentes para especificar modelos que sejam familiares para os stakeholders 

específicos de cada visão e paralelizar as atividades entre equipes diferentes. 

 

2.3.3 Modelos Arquiteturais 

 

Um modelo arquitetural usa convenções de modelagem apropriadas para as 

preocupações endereçadas à uma visão. Essas convenções são especificadas por 



28 
 

 

um tipo de modelo que governa aquele modelo. Dentro de uma descrição arquitetural, 

um modelo arquitetural pode ser parte de uma ou mais visões. (ISO/IEC 42010, 2011). 

 Para Rozansky e Woods (2005), Modelos arquiteturais são representações de 

um ou mais aspectos de um software, que sejam endereçados a uma visão. Os 

autores citam algumas razões para se construir modelos, das quais são: 

 Trazer precisão e foco nos elementos importantes para uma situação 

 Agir como mediação para comunicação, ajudando a explicar a arquitetura a 

outras pessoas envolvidas. 

 Ajudam a analisar situações permitindo isolar elementos chaves e entender 

seus inter-relacionamentos. 

 Auxiliam na organização de processos, equipes e entregáveis. 

 

2.3.4 Correspondência 

De acordo com a norma 42010 (2011), uma correspondência expressa um 

relacionamento entre elementos de uma descrição arquitetural, e são utilizadas para 

representar relações de uma descrição arquitetural ou entre descrições arquiteturais. 

Modelos, visões, pontos de vista possuem correspondências entre si. Geralmente 

uma correspondência é governada por uma regra de correspondência.  

 

2.3.5 Regra de Correspondência 

Segundo a norma ISO/IEC 42010 (2011), uma regra de correspondência força 

um relacionamento dentro de uma descrição arquitetural ou entre descrições 

arquiteturais. As correspondências entre modelos e entre visões de uma descrição 

arquitetural devem estar de acordo com as regras especificadas por uma linguagem 

ou framework arquitetural. 

2.3.6 Lógica arquitetural 

Segundo a norma ISO/IEC 42010 (2011), a lógica arquitetural expressa as 

justificativas, explicações ou motivos para uma decisão arquitetural ter sido escolhida 

ao invés das alternativas propostas. 



29 
 

 

2.3.7 Atributos de qualidade 

De acordo com Rozansky e Woods (2005), uma descrição arquitetural eficiente 

deve balancear seis propriedades: Exatidão, Suficiência, Consciência, Clareza, 

atualidade e precisão. A figura 4 apresenta os atributos de qualidade de uma descrição 

arquitetural. 

Figura 3 - Qualidade de uma descrição arquitetural eficiente 

 

Fonte: Adaptado de Rozansky e Woods, 2005. 

 

Conforme a figura mostra, para uma descrição arquitetural ser eficiente, ela precisa 

balancear as seguintes propriedades: (Rozansky e Woods, 2005) 

 Exatidão: É considerado o mais importante atributo de qualidade da descrição 

arquitetural, onde as informações precisam estar exatas em representar como 

a arquitetura irá atender as necessidades e interesses dos stakeholders; 

 Suficiência: A descrição arquitetural precisa estar detalhada o suficiente para 

responder questões importantes sobre a arquitetura do software. Se a 

descrição arquitetural não tiver informações suficientes, será um obstáculo 

realizar decisões arquiteturais antes que o sistema esteja no ciclo de vida do 

desenvolvimento; 

Descrição 
Arquitetural

Exatidão

Suficiência

ConsiênciaAtualidade

Clareza



30 
 

 

 Consciência: A descrição arquitetural precisa ser mais objetiva e simples em 

expressar os elementos importantes da arquitetura. Entretanto, decidir quais 

elementos são importantes e o detalhe deles dependem de diversos fatores 

como: 

o Capacidade e experiência dos stakeholders; 

o Extensão caso a equipe não esteja familiarizado com a tecnologia 

o Dificuldade do problema que está sendo analisado 

o Quanto tempo e recurso você tem disponível para criar a descrição 

arquitetural. 

 Clareza: A descrição arquitetural precisa ser entendida por todas as classes 

de stakeholders. O conceito de ponto de vista é útil para auxiliar neste ponto. 

 Atualidade: A descrição arquitetural precisar estar de acordo com as 

mudanças feitas na arquitetura, para isso, a descrição arquitetural tem que ter 

um tamanho aceitável para que as mudanças não sejam complexas. 

 Precisão: uma descrição arquitetural precisa descrever a arquitetura 

precisamente para que o sistema seja modelado e implementado, e se não for 

feito direito, a precisão pode se tornar o contrário de consciência  

  

2.4 UML4ODP  
 

2.4.1 Linguagens de descrição arquitetural 

 

Linguagem de descrição arquitetural, segundo a ISO/IEC 42010 (2011), é um 

mecanismo criado através da construção de conceitos utilizados em uma descrição 

arquitetural e tem por objetivo expressar as convenções e práticas comuns para 

construir descrições arquiteturais para diferentes comunidades e domínios de 

aplicação. Segundo a norma, uma linguagem de descrição arquitetural precisa 

especificar: 

 A identificação de um ou mais interesses expressados pela linguagem 

de descrição arquitetural; 

 A identificação de um ou mais stakeholders com seus interesses 

expressados; 



31 
 

 

 Os tipos de modelos implementados que mapeie os interesses; 

 Os pontos de vista que serão utilizados; 

 Regras de correspondências; 

 

2.4.2 Contexto 

 

UML4ODP ou Uso da UML para sistemas especificados em ODP é, segundo a 

ISO/IEC 19703 (2008), uma linguagem de descrição arquitetural que foi criada para 

atender o crescimento da adoção do Modelo de referência de processamento aberto 

distribuído (RM-ODP), utilizando a Linguagem de Modelagem Unificada (UML) para 

expressar a especificação de sistemas que utilizam o modelo ODP. 

Para Rozansky e Woods (2005), provavelmente a UML é a forma mais 

prevalente para criar uma descrição arquitetural. A UML tem algumas vantagens, 

incluindo a sofisticação de algumas de suas notações e sua flexibilidade e 

extensibilidade, e como a UML é muito utilizada, muitos stakeholders não terão 

problemas em entende-la, já que notações mais complexas e menos difundidas, serão 

de difícil entendimento e acompanhamento pelos stakeholders de negócio. 

De acordo com Vallecillo et al (2011), o problema da UML por si só é que ela 

não suporta a separação de preocupações e interesses que existem nos pontos de 

vista de uma descrição arquitetural, entretanto, equipes de desenvolvimento 

adaptavam a UML para torna-lo mais compatível com o ODP. Vendo isso, foi criado 

este padrão, que providencia um perfil que mapeia os conceitos do ODP para a 

notação UML. 

 

 

2.4.3 Pontos de Vista  

 

Os modelos criados a partir da utilização do UML4ODP são baseados nos 

conceitos do RM-ODP. O RM-ODP utiliza cinco pontos de vista para especificar a 

arquitetura de um sistema, como mostra a Figura 4: 



32 
 

 

 

Figura 4 - Pontos de Vista do RM-ODP 

 

Fonte: ISO/IEC 19793:2008 

 

Conforme mostra a Figura 4, cada ponto de vista aborda um grupo de interesses 

do sistema e seu objetivo é auxiliar a responder as perguntas correspondentes à sua 

visão do sistema, segundo o modelo RM-ODP, um sistema é especificado seguindo 5 

pontos de vista, cada um com sua respectiva linguagem de ponto de vista que é usado 

para especificar o sistema. (ISO/IEC 19793, 2008). 

 Ponto de vista empresa: Este ponto de vista foca no escopo do sistema, 

propósito do sistema que é definido pelo comportamento especificado do e 

políticas capturam futuras restrições do comportamento entre o sistema e seu 

ambiente, ou entre as decisões de negócio dos donos do sistema. Sua 

linguagem providencia os conceitos necessários para modelar um sistema 

ODP no contexto do negócio da organização em que ele opera. Sua 

Sistema 

ODP 

Empresa: 

Aspectos do negócio 

O propósito, escopo e políticas para a 

organização que vão pertencer ao sistema. 

Para o que? Porque? Como? Quando? 

Computacional: 

Aspectos do modelo da aplicação 

Decomposição funcional do sistema 

em objetos adequados para 

distribuição. 

Como cada pedaço funciona? 

Tecnologia: 

Implementação 

Hardware e software e distribuição 

atual. 

Com o que? 

Informação: 

Aspectos da Informação do 

sistema 

Informação controlada pelo 

sistema e as restrições no 

uso e interpretação desta 

informação. 

É sobre o que? 

Engenharia: 

Tipos de solução e distribuição 

Infraestrutura necessária para 

apoiar a distribuição. 

Como os bits trabalham juntos? 



33 
 

 

especificação, é modelar objetos empresa, as comunidades do ambiente e 

papéis envolvidos. 

Para Vallecilo et al (2011), os stakeholders que precisam estar satisfeitos com 

a especificação da visão empresa são os donos do processo de negócio que 

será apoiado e os gerentes responsáveis pelas políticas operacionais; 

 Ponto de vista informação: Este ponto de vista foca nos tipos de informação 

controlados e usados pelo sistema. Sua linguagem apresenta os componentes 

individuais e a comunicação entre eles através de um entendimento comum 

das informações que são trafegadas. Sua especificação abrange uma série de 

esquemas: 

o O esquema invariante, que expressa a estrutura, tipos e os 

relacionamentos entre os objetos informação,   

o O esquema estático, que expressa o estado dos objetos informação em 

um determinado tempo; 

o O esquema dinâmico que especifica como a informação pode evoluir 

durante a operação do sistema e quais são os estados que um objeto 

informação pode ter. 

Segundo Vallecillo et al (2011), a visão informação foca em quais informação 

que o software irá manipular e não com as interfaces realizarão essa 

manipulação, nem as tecnologias que definem como os dados serão 

guardados. Portanto, o objetivo deste ponto de vista é ter um dicionário de 

dados para todas as partes. Os stakeholder que tem mais interesses por esta 

visão são os que trabalham com banco de dados; 

 Ponto de vista computação: Este ponto de vista foca em expressar a 

composição funcional do sistema através de uma série de serviços que se 

interagem por interfaces, e qual o comportamento destes serviços. Sua 

especificação modela objetos computacionais que são funções individuais 

realizadas pelo sistema e a interação entre estes objetos através de interfaces. 

Para Vallecillo et al. (2011), o objetivo da visão computação é expressar um 

modelo com as funcionalidades básicas do software, os serviços oferecidos e 

como estes serviços são construídos e estão conectados. A visão computação 

permite a reutilização da arquitetura, separando as funcionalidades de 

plataformas ou tecnologias; 



34 
 

 

 Ponto de vista da engenharia: Este ponto de vista foca na infraestrutura 

necessária para apoiar o sistema, concentrado em como os objetos se 

interagem. Sua especificação é definir os mecanismos necessários para 

suportar as funções do sistema fazendo uso das tecnologias especificadas na 

visão tecnologia. 

Segundo Vallecillo et al. (2011), o ponto de vista engenharia é endereçado aos 

projetistas interessados na infraestrutura do sistema, pois este ponto de vista 

foca nos mecanismos para distribuir os objetos do sistema; 

 Ponto de vista tecnologia: Este ponto de vista foca na escolha dos 

fornecedores e tecnologias para apoiar a infraestrutura do software expressada 

na visão engenharia. Sua especificação modela a configuração de 

componentes de hardware e software para implementação, restringindo custos 

e disponibilidade dos objetos de tecnologia; 

 

2.5 Relação entre a engenharia reversa e a arquitetura de software.  
 

A literatura há muitos anos, contribui com modelos para construção de 

arquiteturas de software, a partir da transformação e migração de arquitetura de 

software, começando por softwares legados. Um dos modelos criado com este 

propósito modelos é o modelo horseshoe apresentado na figura 5. 



35 
 

 

Figura 5 - Modelo Horseshoe 

 

 Fonte: Adaptado de Tripathy e Naik, 2014 

 

Segundo (Tripathy e Naik, 2014), O modelo Horseshoe descreve um processo de 

três etapas para realizar a reengenharia de uma arquitetura de um software, sendo as 

três etapas: 

 Recuperação de arquitetura: Representada pelo lado esquerdo da figura, esta 

etapa consiste em utilizar técnicas de engenharia reversa e o princípio de 

abstração para representar a arquitetura do software a partir do código fonte e 

avaliar se a arquitetura está de acordo com atributos de qualidade do projeto. 

Para recuperar a arquitetura do software, é necessário expressar o código fonte 

nos seguintes modelos:  

o Estrutura de código: Representa a estrutura das instruções, estilos de 

codificação e fluxo da aplicação. 

o Representação de função: Representa o código fonte, em nível de 

funções e os dados manipulados por estas funções, a UML pode ser 

utilizada para esta representação 

Nível de função 

Nível arquitetural 

Estrutura do 

código 

Nível de função 

Nível arquitetural 

Estrutura do 

código 

Código Legado Novo código 

R
e
c
u

p
e

ra
ç
ã

o
 d

a
 a

rq
u

it
e

tu
ra

 

Transformação da arquitetura 

Im
p

le
m

e
n

ta
ç
ã

o
 d

a
 a

rq
u

ite
tu

ra
 

Arquitetura base Arquitetura desejada 



36 
 

 

o Representação Arquitetural: Tem o objetivo de representar padrões de 

projetos, estilos arquiteturais e conceitos envolvidos no código fonte, sua 

representação pode ser feita através de modelos arquiteturais. 

 Transformação de arquitetura: Representada pela seta do topo da figura, 

consiste em transformar a arquitetura atual na arquitetura desejada usando o 

princípio de alteração. 

 Implementação da nova arquitetura: Representada pelo lado direito da figura, 

esta etapa consiste em realizar um desenvolvimento baseado em arquitetura, 

construindo o novo código. 

A primeira etapa do modelo horseshoe apresenta uma série de representações 

que são necessárias para recuperar a arquitetura de um sistema, estas 

representações são necessárias pois não é possível compreender a arquitetura de um 

sistema diretamente pelo código fonte. Para construir modelos que atendam cada 

representação, são necessárias diferentes técnicas para construir estes modelos, 

sendo estas técnicas de engenharia reversa. 

 

 



37 
 

 

3 PROCESSO DE DESCRIÇÂO ARQUITETURAL 
 

Esta seção descreve o processo propostas neste trabalho, com suas atividades, 

tarefas e como foi construído. O processo é especificado e modelado utilizando a 

notação BPMN e baseado na primeira etapa do modelo Horseshoe, que consiste em 

expressar a arquitetura de um software, construindo modelos arquiteturais a partir do 

código fonte. Neste processo, os modelos arquiteturais construídos são do ponto de 

vista da computação do RM-ODP. 

A construção deste processo, foi realizada da seguinte forma: 

1. Construir um processo genérico:  Primeiro, foi realizada a construção de um 

processo genérico para construir uma descrição arquitetural a partir do código 

fonte. Esse processo genérico define os objetivos das atividades e artefatos do 

processo. Esse processo genérico definiu-se com base no modelo Horseshoe, 

o produto de trabalho desta etapa é explicado na figura 6 

 Definir os requisitos: Os requisitos deste trabalho foram identificados a partir 

de quais modelos eram necessários para realizar as abstrações do modelo 

Horseshoe adaptado na Figura 6; 

 Definir as técnicas e ferramentas: Identificar técnicas que utilizem e resultem 

nos modelos identificados na primeira etapa: Nesta etapa, foram 

pesquisadas quais técnicas poderiam ser utilizadas para abstrair um modelo 

para outro modelo, seguindo a ordem do modelo Horseshoe adaptado. 

Nesta etapa foram definidas a ordem das técnicas que seriam utilizadas 

para aplicar o processo; 

 Definir os artefatos: Foram definidas as características dos artefatos 

resultantes deste processo: Nesta etapa foram definidos quais as 

propriedades do artefato gerado por este processo, no caso a descrição 

arquitetural; 



38 
 

 

Figura 6 - Adaptação do modelo Horseshoe para o modelo proposto 

 

Fonte: Elaborado pelo autor  

Como a Figura 6 mostra, o processo tem o objetivo de gerar modelos dos seguintes 

tipos: 

 Modelos de operação: São modelos que não possuem um nome especifico, 

pois, cada técnica utiliza diferentes modelos que são necessários porque todas 

as técnicas de engenharia reversa utilizadas neste trabalho não constroem 

modelos UML direto do código fonte, sendo modelos intermediários de cada 

técnica. Estes modelos tem o objetivo de abstrair código fonte para a análise 

ser feita independente de tecnologia, linguagem ou framework; 

 Modelos do nível de função (UML): O resultado final da primeira etapa, 

geralmente as técnicas de engenharia reversa tem como resultado final 

diagramas UML, ele já fornece informações suficientes para construir modelos 

arquiteturais na segunda etapa; 

 Modelos arquiteturais (Visão computação): Estes modelos serão construídos 

na segunda etapa do processo seguindo a norma ISO/IEC 19793 UML4ODP 

(2008), para expressar o sistema adequadamente com os conceitos de 

arquitetura de software. 

Modelos de 

função (UML) 

Modelos Arquiteturais 

(Visão Computação) 

Modelos de 

operação 

Código Fonte e Script de criação 

do banco de dados 

R
e
c
u

p
e

ra
ç
ã

o
 d

a
 a

rq
u

it
e

tu
ra

 
Descrição arquitetural  

(Visão Computação) 



39 
 

 

 

2. Detalhar as atividades do processo genérico: O resultado é uma descrição 

explícita das tarefas de cada atividade e de cada artefato. Esse detalhamento 

é um tipo de instanciação de processo Borsoi (2008), ou seja, o processo é 

especializado para um modelo aplicável dentro dos requisitos de um contexto 

específico. Para detalhar as atividades utilizou-se o método de instanciação de 

processo Dias (2010) e foram utilizadas as técnicas de engenharia reversa de 

Ramanathan e Hodges (1996), Pereira, Martinez e Favre (2011) e Tonella 

(2005) como contexto sendo apresentado na Figura 7 e detalhado no item 3.1 

e no item 3.2 

 

Figura 7 - Processo de construção de uma descrição arquitetural de sistemas através da 
engenharia reversa 

 

Fonte: Elaborado pelo autor 

 



40 
 

 

De acordo com a Figura 6, o processo deste trabalho é dividido em duas etapas 

principais: Engenharia Reversa para recuperação de Modelos, que mapeia o modelo 

Horseshoe partindo de analisar o código fonte até a representação do nível de função. 

Nesta etapa, um desenvolvedor que possuí um conhecimento detalhado do código 

fonte tem o papel de utilizar técnicas de engenharia reversa para construir os modelos 

UML de diagrama de classes, diagramas de caso de uso e diagramas de sequência.  

A segunda etapa é a construção de uma descrição arquitetural da visão 

computação extraindo informações geradas nos modelos UML para a construção de 

modelos arquiteturais. Nesta etapa, um arquiteto tem o papel de usar as informações 

dos modelos construídos para construir a descrição arquitetural criando modelos da 

visão computação. Esta etapa tem como objetivo selecionar quais informações de 

cada modelo serão necessárias para construir cada modelo arquitetural. 

 

3.1 Etapa 1: Engenharia reversa para recuperação de Modelos 
 

Esta seção apresenta o objetivo, a base para criação e quais os artefatos 

necessários para aplicação da primeira etapa do processo. O objetivo desta etapa é 

possibilitar a identificação das entidades de domínio e compreensão das 

funcionalidades do software e pela equipe de desenvolvimento, e possibilita o 

arquiteto analisar as informações contidas nos resultados desta etapa para expressar 

a arquitetura. A base para esta etapa é utilizar as seguintes técnicas de engenharia 

reversa: 

1. Engenharia reversa de esquemas relacionais para esquemas orientados à 

objetos (Ramanathan e Hodges,1996); 

2. Engenharia reversa para recuperação de diagramas de caso de uso 

(Pereira, Martinez e Favre, 2011); 

3. Engenharia reversa para recuperação de diagramas de sequência (Tonella, 

2005); 

Para a aplicação de todas as técnicas, são necessários o código fonte e o script 

de criação do banco de dados do software. O objetivo das técnicas utilizadas nesta 

etapa é construir modelos no nível de função do modelo horseshoe. Apesar desta 

etapa utilizar estas técnicas, esta etapa não é limitada em utilizar apenas estás 



41 
 

 

técnicas, desde que sejam usadas técnicas que resultem em artefatos no nível de 

função do modelo horseshoe que expressem as funcionalidades do sistema e as 

entidades do domínio. 

Figura 8 - Etapas do processo de engenharia reversa 

 

Fonte: Elaborado pelo autor 

 

Como a Figura 8 mostra, todas estas técnicas são atividades do processo, e 

têm como resultado final a construção de modelos UML, dentre estes modelos estão: 

Um diagrama de classe, um diagrama de caso de uso e um diagrama de sequência. 

Estes modelos foram escolhidos porque o uso dos diagramas de classe, caso de uso 

e sequencia são os diagramas mais utilizados para compreender o comportamento 

de um software. Esta etapa mostra quais informações são necessárias para construir 

uma descrição arquitetural e como elas devem ser organizadas.  

 

3.1.1 Engenharia reversa de esquemas relacionais para esquemas orientado à 
objetos 
 

3.1.1.1. Definição da técnica 

 



42 
 

 

A técnica apresentada por Ramanathan e Hodges (1996), utiliza a engenharia 

reversa em esquemas de banco de dados relacionais, para construir um diagrama de 

classes. Como premissa para utilizar a técnica, o banco de dados a ser analisado deve 

estar na terceira forma normal. A técnica consiste em três etapas principais: 

 Identificação de classes de objetos: Esta etapa cria classes de objetos que 

correspondam às tabelas do modelo relacional. Uma tabela do modelo 

relacional que é categorizada como classe de objetos precisa estar em uma 

das seguintes condições: 

o Uma tabela que possua apenas um atributo como chave primária 

o Uma tabela que possua mais de um atributo como chave primária mas 

pelo menos um destes atributos não seja uma chave estrangeira 

 Identificação de Relacionamentos: Para cada tabela do modelo relacional que 

possua chaves estrangeiras, existe um relacionamento entre duas tabelas. É 

necessário que estes relacionamentos sejam expressados no diagrama de 

classes. O objetivo desta etapa é identificar os relacionamentos divididos entre: 

o Associação: todas as tabelas do modelo relacional cuja chave primária 

consiste inteiramente por chaves estrangeiras, são tabelas associativas. 

Portanto, O diagrama de classes deve expressar um relacionamento 

entre todas as classes de objetos que correspondam as tabelas que 

estão associadas com uma tabela associativa.  

o Herança: As tabelas do modelo relacional que possuam a mesma chave 

primária são representadas no diagrama de classes através de um 

relacionamento de herança. A tabela no qual a chave primária pertence 

é representada no modelo conceitual como classe pai, e as tabelas que 

utilizam a chave primária são representadas no modelo conceitual como 

classes filho. 

o Agregação: Toda a tabela que a chave primária seja composta, 

possuindo chaves estrangeiras e que não sejam associativas, os 

relacionamentos entre estas tabelas são representados no diagrama de 

classes por uma agregação entre a classe que utiliza a chave 

estrangeira, e a classe que possuí a chave estrangeira como atributo.  

 Expressar Cardinalidades: No modelo relacional, existem as cardinalidades 

entre relacionamentos de uma tabela, estas cardinalidades devem ser 



43 
 

 

expressadas igualmente como multiplicidades entre as classes de objetos no 

diagrama de classes.  

As informações desta técnica permitem construir o diagrama de tipos de dados na 

etapa de construir os modelos da visão computação no item 3.2.1 pois o diagrama de 

classes resultante desta técnica representa as entidades de domínio do software. 

 

3.1.1.2. Aplicação da técnica 

 

O objetivo desta técnica dentro do processo deste trabalho, é identificar as 

classes de entidade que o software possuí e os relacionamentos destas classes.  

 

Figura 9 - Processo de recuperação do esquema orientado a objetos 

 

Fonte: Elaborado pelo autor 

 

Como a figura mostra, o desenvolvedor utiliza a técnica em uma série de 

atividades e tarefas que correspondem às etapas da técnica de engenharia reversa. 

Cada atividade é detalhada nas tabelas a seguir: 

 



44 
 

 

Tabela 1 - Descrição da atividade "Construir a lista de tabelas do esquema relacional” 

Atividade A1. Construir a Lista de Tabelas do Esquema Relacional 

Tarefas T1. Identificar Tabelas 

T2. Identificar atributos de cada tabela identificada 

T3. Identificar relações de chaves primárias e chave 

estrangeira de cada tabela. 

Artefato de 

entrada 

Script do Banco de dados (Arquivo DDL) 

Artefato de saída Lista de descrição das tabelas 

Fonte: Elaborado pelo autor 

 

Tabela 2 - Descrição da atividade "Identificar Classes de Objetos” 

Atividade A2. Identificar Classes de Objetos 

Tarefas T1. Identificar as tabelas do esquema relacional que esteja 

nas condições de ser uma classe de objetos 

T2. Para cada tabela identificada na tarefa anterior, modelar 

uma classe com o mesmo nome da tabela e os mesmos 

atributos. 

Artefato  

de entrada 

Lista de descrição das tabelas 

Artefato de saída Lista de tabelas de Classes de Objetos 

Fonte: Elaborado pelo autor 

 

Tabela 3 - Descrição da atividade "Identificar Associações" 

Atividade A3. Identificar Associações 

Tarefas T1. Criar uma Lista com o nome de “Lista de Associações” 

T2. Identifique todas as tabelas associativas 

T3. Para cada tabela identificada, insira um registro na lista de 

heranças na seguinte estrutura. 



45 
 

 

Artefato 

de entrada 

• Lista de descrição das tabelas 

• Tabela de Classes de Objetos 

Artefato de saída • Lista de Associações 

Fonte: Elaborado pelo autor 

 

Tabela 4 - Descrição da atividade "Identificar Heranças" 

Atividade A4. Identificar Heranças 

Tarefas T1. Criar uma Lista com o nome de “Lista de Heranças” 

T2. Identificar todas as tabelas que estejam categorizadas por 

uma relação de herança (tabelas que possuem a mesma 

chave primária) 

T3. Para cada tabela identificada, insira um registro na lista de 

heranças 

Artefato  

de entrada 

• Esquema relacional 

• Tabela de Classes de Objetos 

Artefato de saída • Lista de Heranças 

Fonte: Elaborado pelo autor 

 

Tabela 5 - Descrição da atividade "Identificar Agregações" 

Atividade A5. Identificar Agregações 

Tarefas T1. Criar uma Lista com o nome de “Lista de Agregações” 

T2. Identifique todas as tabelas que possuam relacionamento 

de agregação (tabelas que a chave primária tenha mais de 

um atributo e pelo menos um deles não é uma chave 

estrangeira) 

T3. Para cada tabela identificada, insira um registro na lista de 

agregações 

Artefato  

de entrada 

• Esquema relacional 

• Tabela de Classes de Objetos 

Artefato de saída • Lista de Agregações 



46 
 

 

Fonte: Elaborado pelo autor 

 

Tabela 6 - Descrição da atividade “Identificar Cardinalidades” 

Atividade A6. Identificar Cardinalidades 

Tarefas T1. Criar uma Lista com o nome de “Lista de Cardinalidades”  

T2. Para cada relacionamento entre 2 classes, identificar o 

tipo de cardinalidade 

T3. Para cada cardinalidade identificadas, inserir um registro 

de multiplicidade correspondente a cardinalidade 

Artefato  

de entrada 

• Esquema relacional 

• Tabela de Classes de Objetos 

• Tabela de Associações 

• Tabela de Heranças 

• Tabela de Agregações 

Artefato de saída • Lista de Cardinalidades 

Fonte: Elaborado pelo autor 

 

Tabela 7 - Descrição da atividade "Construir o diagrama de classes" 

Atividade A7. Construir o diagrama de classes 

Tarefas T1. Crie um diagrama de classes com as seguintes 

considerações: 

T2. Para cada classe de objetos, construa uma classe 

correspondente com o mesmo nome e os mesmo 

atributos. 

T3. Para cada relacionamento na tabela de associações, 

herança e agregação, construa um no diagrama um 

relacionamento entre as classes 

T4. Para cada cardinalidade entre as relações de tabelas, 

defina a multiplicidade entre as classes de forma idêntica. 



47 
 

 

Artefato  

de entrada 

• Esquema relacional 

• Tabela de Classes de Objetos 

• Tabela de Associações 

• Tabela de Heranças 

• Tabela de Agregações 

• Tabela de Cardinalidade 

Artefato de saída • Esquema Orientado a Objetos 

 Fonte: Elaborado pelo autor 

 

3.1.2 Engenharia reversa para recuperação de diagramas de caso de uso 
 

3.1.2.1. Definição da técnica 

 

A técnica apresentada por Pereira, Martinez e Favre (2011), constrói diagramas 

de caso de uso a partir da análise estática de um código orientado a objetos. Os 

diagramas de caso de uso resultantes desta técnica precisam ter os seguintes 

elementos: 

 Casos de uso: Cada método público de uma classe é construído um caso 

de uso correspondente. 

 Generalizações: Se existe um método em duas classes diferentes com o 

mesmo nome, é criada uma generalização.  

 Dependências: Se um método público chama outro método público, é criado 

uma relação de dependência entre estes 2 métodos. 

A técnica realiza as seguintes etapas: 

 Criar o código abstrato da classe, realizando as seguintes tarefas: 

o Identificar declarações: No código fonte são linhas que declaram 

atributos, métodos e construtores.  

o A partir de cada declaração identificada, construa o código abstrato, 

sendo sua sintaxe: [nome da classe]. [nome do método].[declaração]  



48 
 

 

o Identificar instruções que são alocações, assinatura e invocações de 

métodos, para cada instrução, gere sua sintaxe que deve ser [nome 

da classe]. [nome do método].[instrução]. 

o Desconsidere condições, loops, retornos e importações. 

 

 Aplicar algoritmo de recuperação de diagramas de caso de uso como 

mostra a Figura 10. 

 

Figura 10 - Algoritmo de Recuperação de Diagramas de Caso de Uso 

 

Fonte: Pereira, Martinez e Favre (2011) 

 



49 
 

 

Esta técnica se limita a identificação dos casos de uso pela análise estática, 

pois a analise não é realizada enquanto o sistema está em funcionamento, não sendo 

possível identificar os atores do sistema. De acordo com os autores, para identificar 

os fluxos do caso de uso seria necessária uma análise dinâmica no código fonte, 

extraindo os fluxos do sistema em funcionamento ou através da utilização de casos 

de teste. Os autores citam algumas etapas para recuperar casos de uso, que tem 

como base o modelo utilizado por Tonella (2005), que será explicado no item 3.1.3. 

As informações obtidas neste modelo permitem construir os diagramas de assinaturas 

de interface, template de interface e template de objetos no item 3.2.1, pois o resultado 

desta técnica expressam os serviços relacionadas com cada entidade identificada no 

item 3.1.1. 

 

3.1.2.2. Aplicação da Técnica 

 

O objetivo da técnica no processo desse trabalho é analisar os serviços que 

são responsáveis pelas classes identificadas no diagrama de classes da técnica 

anterior. Para utilizar essa técnica no processo descrito no presente trabalho, esta foi 

dividida no seguinte processo: 



50 
 

 

 

Figura 11 - Processo de recuperação de diagramas de caso de uso 

 

Fonte: Elaborado pelo autor 

 

Como a Figura 11 mostra, o desenvolvedor utiliza a técnica em uma série de 

atividades que correspondem às etapas da técnica de engenharia reversa. Cada 

atividade é detalhada nas tabelas a seguir: 

 

Tabela 8 - Descrição da atividade "Gerar código abstrato da classe" 

Atividade A1. Gerar código abstrato da Classe 

Tarefas T1. Identificar classes que manipulam a classe de objeto do 

modelo orientado a objetos.  

T2. Para cada classe identificada, gerar um código abstrato de 

cada classe. 

Artefato  

de entrada 

• Esquema orientado à objetos 

• Código Fonte 

Artefato de saída • Código Abstrato 



51 
 

 

Elaborado pelo autor 

 

Tabela 9 - Descrição da atividade "Aplicar algoritmo de recuperação de caso de uso" 

Atividade A2. Aplicar algoritmo de recuperação de caso de uso 

Tarefas T1. Criar uma tabela com a seguinte estrutura de colunas 

(Caso de Uso, Dependência, Generalização) 

T2. A partir do código abstrato, aplicar o algoritmo de análise 

estática: 

T3. Identificar casos de uso. 

T4. Identificar generalizações. 

T5. Identificar dependências. 

Artefato  

de entrada 

• Esquema orientado à objetos 

• Código Fonte 

Artefato de saída • Tabela de saída do algoritmo de análise estática 

 

Fonte: Elaborado pelo autor 

 

Tabela 10 - Descrição da atividade "Construir diagrama de caso de uso" 

Atividade A3. Construir diagrama de caso de uso 

Tarefas T1. Modelar casos de uso 

T2. Modelar generalizações 

T3. Modelar dependências 

Artefato  

de entrada 

• Tabela de saída do algoritmo de análise estática 

• Código Fonte 

Artefato de saída • Tabela de saída do algoritmo de análise estática 

Fonte: Elaborado pelo autor 

 

3.1.3 Engenharia reversa para recuperação de diagramas de sequência 

3.1.3.1. Definição da técnica 

 



52 
 

 

A técnica apresentada por Tonella (2005) consiste em utilizar a engenharia reversa 

para modelar diagramas de sequência, com o objetivo de entender o comportamento 

interno das funcionalidades do software e as mudanças que um objeto tem através do 

fluxo de mensagens entre métodos. A técnica do autor consiste nas seguintes etapas: 

 Extrair o código abstrato do método, utilizando a mesma técnica do item 

3.1.2; 

 Construir um OFG (grafo de fluxo de objetos) através do código abstrato, 

para identificar as mudanças que o objeto sobre ao decorrer do método; 

 Identificar as chamadas de métodos, o objeto que realiza a chamada e os 

objetos que são impactados pela chamada; 

 Identificar condições e loops codificados. 

As informações obtidas neste modelo permitem construir comportamento dos 

serviços do diagrama de assinaturas de interfaces no item 3.2.1, pois o resultado desta 

técnica expressa como funciona os serviços por cada caso de uso identificado no item 

3.1.2. 

 

3.1.3.2. Aplicação da Técnica 

 

O objetivo desta técnica neste trabalho é modelar o comportamento interno dos 

casos de uso identificados na técnica anterior. Para utilizar está técnica no processo 

descrito por este trabalho, ela foi dividida no seguinte processo: 



53 
 

 

 

 

Figura 12 - Processo de recuperação de diagrama de sequência 

 

 Fonte: Elaborado pelo autor  

Como a Figura 12 mostra, o desenvolvedor utiliza a técnica em uma série de 

atividades que correspondem às etapas da técnica de engenharia reversa. Está 

técnica, assim como a técnica para recuperação do caso de uso, não identifica um 

ator externo do sistema, e por não ser uma análise dinâmica, não identifica quais 

fluxos ocorrem durante o funcionamento do sistema. Cada atividade é detalhada nas 

tabelas a seguir: 

 

Tabela 11 - Descrição da atividade "Transformar método em código abstrato" 

Atividade A1. Transformar método em código abstrato 

Tarefas T1. Identificar declarações 

T2. Identificar Instruções 

Artefato  

de entrada 

• Diagrama de caso de uso 

• Código Fonte 

Artefato de saída • Código Abstrato 



54 
 

 

Fonte: Elaborado pelo autor 

 

Tabela 12 - Descrição da atividade "Construir código OFG do código abstrato" 

Atividade A2. Construir OFG do código abstrato 

Tarefas T1. Identifique as declarações de objetos e instruções do 

código abstrato 

T2. Crie um nó para cada objeto declarado e para cada 

instrução que modifique o fluxo deste objeto 

T3. Para cada relacionamento entre as declarações e as 

instruções que modificam este objeto, crie uma ponta 

entre os nós.  

Artefato 

de entrada 

• Código abstrato 

Artefato de saída • Grafo de fluxo de objetos 

Fonte: Elaborado pelo autor 

 

Tabela 13 - Descrição da atividade "Construir diagrama de sequência" 

Atividade A3. Construir diagrama de sequência 

Tarefas T1. Crie uma tabela com as seguintes colunas (Linha, 

Chamada, Fontes, Alvos) 

T2. Analisar chamadas de métodos no OFG e identifique os 

métodos. 

T3. Analisar o método, mapeando as ocorrências de loops e 

condições. 

T4. Inserir marcas do diagrama de sequência. 

Artefato  

de entrada 

• Código fonte 

• Grafo de fluxo de objetos 

Artefato de saída • Diagrama de sequência 

Fonte: Elaborado pelo autor 

 



55 
 

 

3.2 Etapa 2: Construção de uma descrição arquitetural 
 

Esta seção apresenta a segunda etapa do processo descrito neste trabalho, a 

justificativa da escolha da visão computação, a relação dos artefatos gerados na 

primeira etapa com os artefatos que serão gerados nesta etapa e os conceitos 

utilizados na primeira etapa com relação aos conceitos desta etapa. 

O objetivo desta etapa é utilizar as informações de modelos do nível de função 

para descrever a arquitetura do software. Os modelos resultantes da primeira etapa 

conceitualmente expressam as funcionalidades e comportamento de um software, 

através de diagramas estruturais como o diagrama de classe e diagramas de 

comportamento como os diagramas de caso de uso e de sequência, além disso, estes 

diagramas são utilizados pela UML4ODP para representar a visão computação de 

uma arquitetura. Portanto, a visão computação é a visão escolhida para realizar a 

descrição arquitetural, pois está visão tem o papel de expressar os serviços e o 

comportamento destes serviços dentro de uma descrição arquitetural. 

De acordo com Romero (2011), os conceitos da UML mapeiam em grande parte 

os conceitos do ODP, portanto, é viável construir um modelo da visão computação, 

baseando-se em um modelo UML. O autor apresenta uma tabela correspondendo os 

conceitos da visão computação do ODP com elementos UML pela tabela a seguir: 

 

Tabela 14 - Tabela de perfil de conceitos ODP e UML 

1. Conceito ODP 2. Elemento UML 3. Estereótipo 

Computacional 

Object Template 

Component <<CV_CompObjectTemplate>> 

Computacional 

interface template 

Port <<CV_CompInterfaceTemplate>> 

Signal Interface 

Signature 

Interface(s) <<CV_SignalInterfaceSignature>> 

Operation 

Interface Signature 

Interface(s) <<CV_OperationInterfaceSignature

>> 



56 
 

 

Tabela 14 - Tabela de perfil de conceitos ODP e UML (Conclusão) 

Stream Interface 

Signature 

Interface(s) <<CV_StreamInterfaceSignature>> 

Announcement 

Signature 

Reception <<CV_AnnouncementSignature>> 

Interrogation 

Signature 

Reception <<CV_InterrogationSignature>> 

Termination 

Signature 

Reception <<CV_TerminationSignature>> 

Signal signature Reception <<CV_SignalSignature>> 

Flow Signature Reception <<CV_FlowSignature>> 

Computacional 

Object 

InstanceSpecification <<CV_Object>> 

Signal Interface Port(interaction Point) <<CV_SignalInterface>> 

Operation 

Interface 

Port (Interaction 

Point) 

<<CV_OperationInterface>> 

Stream Interface Port (Interaction 

Point) 

<<CV_StreamInterface>> 

Signal Message <<CV_Signal>> 

Flow Interaction/Message <<CV_Flow>> 

Announcement Message <<CV_Announcement>> 

Invocation Message <<CV_Invocation>> 

Termination Message <<CV_Termination>> 

Fonte: Romero e Vallecillo, 2005 

 



57 
 

 

Como a tabela mostra, para cada conceito da visão computação do ODP, sua 

representação pode ser feita por um elemento UML, desde que o elemento no modelo 

seja categorizado por um estereótipo do conceito, este estereótipo categoriza o 

conceito apresentado em cada elemento do modelo arquitetural. O processo de 

construir modelos arquiteturais baseado na tabela 13 é o objetivo da primeira atividade 

da segunda etapa. As atividades de construção da descrição arquitetural são 

apresentadas na Figura 13: 

 

Figura 13 - Processo de contrução da descrição arquitetural 

 

Fonte: Elaborado pelo autor 

 

Tabela 15 - Descrição da atividade "Construir descrição arquitetural" 

Atividade A1. Construir descrição arquitetural 

Tarefas T1. Definir o propósito do sistema 

T2. Definir as características do sistema 

T3. Definir os stakeholders 

T4. Inserir a visão computação 



58 
 

 

T5. Inserir os modelos da visão computação 

T6. Inserir o ponto de vista computacional 

T7. Inserir os modelos do ponto de vista computacional 

Artefato  

de entrada 

Modelos da visão computação 

Artefato de saída Descrição Arquitetural 

 

Fonte: Elaborado pelo autor 

 

3.2.1 Construir Modelos da Visão Computação 
 

Esta seção apresenta a base conceitual para especificação da visão computação, 

sua contribuição para a compreensão da arquitetura do sistema, limitações e as 

atividades e tarefas do processo para especificar este ponto de vista. 

 

Figura 14 - Processo de construção da visão computação 

 

Fonte: elaboração do autor 

 

Tabela 16 - Descrição da atividade "Construir uma estrutura da visão computação" 

Atividade A2.  Construir estrutura da visão computação 

Tarefas T1. Construir um diagrama de pacotes com os seguintes 

pacotes: 



59 
 

 

a. Template de objetos 

b. Template de interfaces 

c. Assinaturas de Interfaces 

d. Tipos de dados 

Artefato 

de entrada 

 

Artefato de saída Diagrama da estrutura da visão computação 

Fonte: Elaborado pelo autor 

 

Tabela 17 - Descrição da atividade "Construir o diagrama de template de objetos" 

Atividade A3. Construir o diagrama de template de objetos 

Tarefas T1. Identificar objetos computacionais 

T2. Para cada objeto identificado na tarefa 1, criar uma classe 

correspondente com o estereótipo “Objeto da visão 

computação” 

Artefato  

de entrada 

Diagrama de caso de uso 

Artefato de saída Diagrama de assinaturas 

Fonte: Elaborado pelo autor 

 

Tabela 18 - Descrição da atividade "Construir o diagrama de templates de interfaces" 

Atividade A4. Construir o diagrama de template de interfaces 

Tarefas T1. Identificar interfaces da visão computação 

T2. Para cada interface identificado no passo 1, criar uma 

classe correspondente com o estereótipo “Interface da 

visão computação” 

Artefato  

de entrada 

Diagrama de caso de uso 

Artefato de saída Diagrama de assinaturas 

Fonte: Elaborado pelo autor 

 



60 
 

 

Tabela 19 - Descrição da atividade "Construir o diagrama de assinaturas" 

Atividade A5. Construir o diagrama de assinaturas 

Tarefas T1. Identificar assinaturas de interface de operações 

T2. Para cada assinatura identificada na tarefa 1, construir 

uma classe do estereótipo “Assinatura de interface da 

visão computação” 

T3. Identificar sinais de interface 

T4. Para cada sinal identificado, construir um relacionamento 

entre objetos de assinaturas de interface correspondentes 

Artefato  

de entrada 

Diagrama de caso de uso 

Artefato de saída Diagrama de assinaturas 

Fonte: Elaborado pelo autor 

 

Tabela 20 - Descrição da atividade "Construir diagrama de tipo de dados" 

Atividade A6. Construir o diagrama de tipos de dados 

Tarefas T1. Identificar classes no esquema orientado a objetos 

T2. Identificar parâmetros dos métodos nas interações dos 

diagramas de sequencia 

T3. Para cada item identificado no passo 1, modele uma 

classe com o estereótipo “Tipo de dado da visão 

computação” 

T4. Para cada item modelado no passo 2, identificar seus 

atributos 

T5. Para cada item identificado no passo 3, modelar os 

atributos correspondentes a cada classe 

Artefato de 

entrada 

Esquema orientado à objetos 

Diagrama de sequencia 

Artefato de saída Diagrama de tipos de dados 

Fonte: Elaborado pelo autor 

 



61 
 

 

Tabela 21 - Descrição da atividade "Construir o diagrama de comportamento da assinatura" 

Atividade A7. Construir o diagrama de comportamento da assinatura 

Tarefas T1. Construir um diagrama de sequência do estereótipo 

“Comportamento da visão computação” 

T2. Identificar ciclos de vida 

T3. Para cada ciclo de vida, modelar um ciclo de vida do 

estereótipo “Objeto da visão computação” 

T4. Identificar fluxo 

T5. Identificar interações 

T6. Para cada mensagem do fluxo, modelar um sinal 

correspondente no diagrama construído no passo 1 

T7. Para cada interação identificada no passo 5, modelar um 

sinal com o nome correspondente e os parâmetros iguais. 

Artefato  

de entrada 

Diagrama de sequência 

Artefato de saída Diagrama de comportamento 

Fonte: Elaborado pelo autor 

 

3.3 Conclusão do capitulo 
 

Este processo limita-se em analisar o software e descrever sua arquitetura, não 

em um processo de reengenharia de um sistema em si, pois, o objetivo deste processo 

é auxiliar as equipes de desenvolvimento a compreender a arquitetura do sistema e 

discutir as necessidades dos stakeholders adequadamente e o impacto das 

adaptações que são necessárias para atender estas necessidades, este processo não 

define linguagens de programação, tecnologias e ferramentas específicas para 

construir os modelos, estas definições são exemplificadas no capítulo 4. 

 



62 
 

 

4 ROTEIROS DO PROCESSO 
 

Este capítulo apresenta o roteiro operacional que foi aplicado do processo 

especificado no capitulo 3. O Cenário de aplicação deste trabalho envolve uma 

organização do setor comercial que deseja obter um sistema de comércio eletrônico, 

entretanto, esta organização não possuí uma área de TI especializada para 

desenvolvimento de aplicações corporativas, portanto, a empresa necessitou 

terceirizar a implementação do ecommerce por uma empresa de soluções e 

consultoria em TI. 

A empresa contratada fechou um acordo para criar o sistema, e como solução, 

apresentou um software de comércio eletrônico de código aberto, afirmando que o 

software possuía diversas funcionalidades que a organização desejava utilizar em seu 

modelo de negócio, além disso, afirmaram que após analisar as informações do 

software no site oficial e testar o sistema em um ambiente controlado, identificaram 

que o software tinha configurações que permitiam adequar o software com as 

necessidades da organização. O sistema apresenta as seguintes características 

técnicas: 

 O sistema é de código aberto do paradigma Orientado à Objetos. 

 O sistema é uma aplicação web, utilizando o framework ASP.NET MVC que 

utiliza a linguagem C#. 

 O sistema utiliza um banco de dados relacional, criado na tecnologia SQL 

2008 R2. 

 O sistema é hospedado no servidor IIS. 

 Como artefatos do sistema, o desenvolvedor possuí o código fonte e o script 

de criação do esquema SQL do banco de dados 

Depois de testar em conjunto a aplicação com a empresa de consultoria, concluiu-

se que apesar do sistema mapear seus interesses, o sistema precisava estar 

adequado às regras de negócio de frete, adicionar novos métodos de pagamento, 

modificar os campos para registro do cliente, modificar apresentação das tabelas no 

módulo administrativo. Sendo assim, a empresa de consultoria decidiu realizar a 

adaptação. 



63 
 

 

Durante a fase de especificação do ecommerce adaptado, a equipe de 

desenvolvimento considerou procurar alguma documentação do projeto de código 

aberto, para que fosse possível estimar o impacto, tempo e recursos que seriam 

necessários para realizar as adaptações. Entretanto, a documentação referente a 

arquitetura, não era detalhada, reforçando os resultados da pesquisa realizada por 

Ding et al (2014). A falta da documentação arquitetural do ecommerce resultou nos 

seguintes obstáculos durante o projeto de adaptação. 

 A equipe de desenvolvimento precisou de um tempo acima do esperado 

para entender o código fonte do sistema; 

 A comunicação entre o cliente da organização, o líder do projeto e à equipe 

de desenvolvimento entravam em conflito por modificações que o cliente 

considerava simples de implementar e a equipe de desenvolvimento 

afirmava que havia uma complexidade alta em realizar tal mudança; 

 Os Prazos eram definidos com base apenas na inferência e especialidade 

do código fonte da equipe de desenvolvimento e geralmente acabavam 

sendo ultrapassados; 

A empresa de consultoria deseja que as futuras alterações não tenham estes 

obstáculos, além disso, a empresa tem como objetivo fornecer o ecommerce para 

novos clientes que possam desejar à adoção e adaptação do sistema de comércio 

eletrônico, sendo assim, a equipe de desenvolvimento da empresa entende que é 

necessário criar as adaptações de forma que elas sejam reutilizadas para outros 

clientes. Estas adaptações dos serviços e funcionalidades do ecommerce precisam 

estar de acordo com uma arquitetura que permita o reuso, e para isso, os stakeholders 

do projeto precisam entender o ecommerce através de modelos que descrevam a 

arquitetura do sistema atual. 

 A partir destes obstáculos e como não foi possível realizar alguma análise 

eficiente sobre o sistema a partir de uma documentação, assim como a ISO/IEC 14764 

(2006) sugere, será necessário realizar a engenharia reversa ao nível arquitetural em 

partes do código para uma análise sobre a adaptação do sistema. 

 

4.1.1 Aplicação do Processo e Especificação do Roteiro 
 



64 
 

 

Esta seção apresenta a aplicação do processo apresentado no capitulo 3 e a 

criação do roteiro operacional a partir das atividades modeladas. 

A aplicação deste roteiro tem como necessidade o seguinte requisito especificado 

pelo cliente. 

 Modificar o cadastro do cliente para identificar se a pessoa é física ou jurídica 

 Remover campos de endereço do registro do cliente para utilizar apenas o 

registro de endereço 

 Adicionar campos de CNPJ e Inscrição Estadual 

 Separar o campo de endereço no registro de endereço entre logradouro, 

número, complemento e bairro 

 

4.1.2 Roteiro da recuperação do esquema orientado a objetos 
 

Tabela 22 - Descrição do roteiro da atividade "Construir a lista de tabelas do esquema 
relacional" 

Atividade A1. Construir a Lista de Tabelas do Esquema relacional 

Roteiro 1. Criar uma lista com a seguinte estrutura:  

Lista de tabelas de esquema relacional 

C1. Nome da 

Tabela 

C2. Atributos C3. Chaves 

Primárias 

C4. Chaves 

Estrangeiras 

 

2. Abra o bloco de notas e abra o script do banco de dados para 

identificar instruções de criação de tabela ex:“Create Table [Nome da 

Tabela] {Lista de Atributos} ”. 

3. Para cada instrução identificada no passo 2, inserir um registro na 

lista criada no passo 1, inserindo na coluna “C1” o nome da tabela 

que está no script, ex: 

C1. Nome da 

Tabela 

C2. Atributos C3. Chaves 

Primárias 

C4. Chaves 

Estrangeiras 

Nome da Tabela    

  



65 
 

 

4. Para cada registro inserido no passo 3, inserir os atributos 

correspondentes aos registros das tabelas identificadas no passo 2, 

ex: 

C1. Nome da Tabela C2. Atributos 

Nome da Tabela Atributo 1 (tipo) 

Atributo 2 (tipo) 

 

5. Para cada instrução identificada no passo 2, identificar atributos 

categorizados como chaves primária ex:“Atributo 1 (tipo) PRIMARY 

KEY” 

6. Para cada item identificado no passo 5, inserir na lista criada no 

passo 1 no registro da tabela que a chave pertence, as chaves 

primárias identificadas no passo 5 na coluna “C3”, ex: 

C1. Nome da Tabela C2. Atributos C3. Chaves Primárias 

Nome da Tabela Atributo 1 (tipo) 

Atributo 2 (tipo) 

Atributo 1 (tipo) 

 

7. Identificar chaves estrangeiras, analisando instruções que tenham a 

seguinte estrutura: “CONSTRAINT [Nome da chave estrangeira] 

FOREIGN KEY (Nome do atributo da chave estrangeira) 

REFERENCES Tabela principal (Atributo Principal)”. 

8. Para cada item identificado no passo 7, inserir na lista criada no 

passo 1 um registro correspondente a tabela pertencente a chave na 

seguinte estrutura:  

C1. Nome da Tabela C2. Atributos C4. Chaves Estrangeiras 

Nome da Tabela Atributo 1 (tipo) 

Atributo 2 (tipo) 

[Atributo  2 (Nome da 

Tabela Principal)] 

 

 

Fonte: Elaborado pelo autor 

 

Tabela 23 - Descrição do roteiro da atividade "Identificar classes de objetos" 

Atividade Identificar classes de objetos 



66 
 

 

Roteiro 1. Criar uma lista a seguinte estrutura: 

Tabela de Classes de Objetos 

C1. Id C2. Nome da 

Classe 

C3. Atributos da 

Classe 

C4. Tabela 

Correspondente 

2. Identificar as tabelas do banco de dados que sejam categorizadas 

como classes de objetos 

3. Identificar atributos das tabelas 

4. Para cada Tabela identificada no passo “2”, inserir um registro na 

lista criada no passo 1, com as seguintes considerações: 

a. O campo Id é sequencial 

b. O registro da coluna “C2” é idêntico ao nome da tabela 

c. Os atributos devem ser expressados iguais aos atributos da 

tabela, na estrutura [Nome do atributo (Tipo do atributo)] 

d. O campo “C4” é inserido o nome da tabela correspondente 

a classe registrada. 

Fonte: Elaborado pelo autor 

 

Tabela 24 - Descrição do roteiro da atividade "Identificar associações" 

Atividade Identificar associações 

Roteiro 1. Criar uma Lista com a seguinte estrutura:  

Lista de Associações 

C1. Id C2. Classe 1 C3. Classe 2 C4. Nome da Associação 

 

2. Identifique todas as tabelas associativas. 

3. Para cada tabela identificada, insira um registro na lista de 

associações na seguinte estrutura:  

C1. Id C2. Classe de 

objeto 1 

C3. Classe de 

objeto 2 

C4. Nome 

da 

Associação 

Sequencial Nome da Classe 

(correspondente ao 

relacionamento 

Nome da Classe 

(correspondente 

ao relacionamento 

R[Id] – [Id 

da classe1] 

[Id da 

classe 2] 



67 
 

 

identificado na 

tabela associativa) 

identificado na 

tabela associativa) 
 

 

Fonte: Elaborado pelo autor 

 

 

Tabela 25 - Descrição do roteiro da atividade "Identificar Heranças" 

Atividade Identificar heranças 

Roteiro 1. Criar uma Lista com a seguinte estrutura: 

Lista de Heranças 

C1. Id C2. Classe Pai C3. Classe Filho C4. Nome da Herança 

 

2. Analisar o esquema relacional e identificar todas as tabelas que 

possuam uma relação de herança (tabelas que possuem a mesma 

chave primária). 

3. Para cada tabela identificada no passo 2, inserir um registro na lista 

criada no passo 1, na seguinte estrutura: 

a. O Id segue a seguinte estrutura: “C [id da classe associada 1] 

R [Número sequencial do relacionamento]” 

b. A classe pai corresponde a classe que possuí o atributo da 

chave primária 

c. A classe filha corresponde a classe que utiliza a chave 

primária da classe pai 

Fonte: Elaborado pelo autor 

 

Tabela 26 - Descrição do roteiro da atividade "Identificar Agregações" 

Atividade Identificar Agregações 

Roteiro 1. Criar uma Lista com o a seguinte estrutura: 

Lista de Agregações 

C1. Id C2. Classe 

Agregadora 

C3. Classe 

Agregada 

C4. Nome da agregação 

 



68 
 

 

2. Identifique todas as tabelas que possuam relacionamento de 

agregação (tabelas que a chave primária tenha mais de um atributo 

e pelo menos um deles não é uma chave estrangeira (tabelas que 

possua uma chave primaria composta, mas que pelo menos um dos 

atributos não seja uma chave estrangeira). 

3. Para cada Tabela Identificada, registre uma agregação com as 

seguintes condições: 

a. Classe agregada = Classe que utiliza o atributo de outra 

classe. 

b. Classe agregadora = classe que fornece o atributo usado 

pelas classes agregadas 

Fonte: Elaborado pelo autor 

 

Tabela 27 - Descrição do roteiro da atividade "Identificar cardinalidades" 

Atividade Identificar Cardinalidades 

Roteiro 1. Crie uma Lista com a seguinte estrutura: 

Lista de Cardinalidades/Multiplicidades 

C1. Id C2. 

Relacionamento 

C3. Cardinalidade C4. Multiplicidade 

 

2. Para cada registro de relacionamento entre 2 classes nas listas de 

associações, heranças e agregações, identificar suas cardinalidades. 

3. Para cada cardinalidade identificada, insira um registro na lista criada 

no passo 1, com as seguintes considerações: 

a. Id: Sequencial (1,2,3,4) 

b. Relacionamento = (Nome do relacionamento) 

c. Cardinalidade =  (ex: 1 para 1,1 para muitos, muitos para 

muitos) 

d. Multiplicidade = (ex: 1 para 1,1 para muitos, muitos para 

muitos) 

Fonte: Elaborado pelo autor 

 



69 
 

 

Tabela 28 - Descrição do roteiro da atividade "Construir esquema orientado à objetos" 

Atividade Construir esquema orientado à objetos 

Roteiro 1. Crie um diagrama de classes com as seguintes considerações: 

a. Para cada classe de objetos, construa uma classe 

respectiva com o mesmo nome e os mesmos atributos 

sendo todos públicos, 

b. Para cada relacionamento na tabela de associações, 

herança e agregação, construa no diagrama um 

relacionamento entre as classes 

c. Para cada cardinalidade entre as relações, expressar a 

multiplicidade entre o relacionamento. 

Fonte: Elaborado pelo autor 

 

4.1.3  Roteiro para recuperação de diagrama de caso de uso 
 

Tabela 29 - Descrição do roteiro da atividade "Gerar código abstrato" 

Atividade Gerar Código Abstrato 

Roteiro 1. Abra o Visual Studio, e na janela de “explorador da solução” 

Identificar classes que manipulam as classes de objetos 

identificadas no item 4.1.2 (Classes de controller e services) ex: 

public class [Nome da classe][Service]). 

1. Para cada classe identificada, gerar seu código abstrato seguindo 

as seguintes considerações: 

a. Uma classe possui 0 ou muitas declarações seguida de 0 ou 

muitas instruções. 

b. Declarações são declarações de atributos, métodos e 

construtores, a partir de cada declaração, gere sua sintaxe 

que deve ser [nome da classe]. [nome do 

método].[declaração]) 

c. Instruções são alocações, assinatura e invocações de 

métodos, para cada instrução, gere sua sintaxe que deve 

ser [nome da classe]. [nome do método].[instrução]. 



70 
 

 

d. (obs) Desconsidere condições, loops, retornos e 

importações. 

 Fonte: Elaborado pelo autor 

 

Tabela 30 - Descrição do roteiro da atividade "Executar algoritmo de recuperação de caso de 
uso" 

Atividade Executar algoritmo para análise estática 

Roteiro 1. Criar uma tabela com a seguinte estrutura de colunas:  

Tabela do Algoritmo de Recuperação de Caso de Uso 

Caso de Uso Dependências Generalizações 

 

2. A partir do código abstrato, aplicar o algoritmo de recuperação de 

caso de uso: 

3. Para os casos de uso, generalizações e dependências 

identificados no passo 2, insira um registro na tabela criada no 

passo 1 

Fonte: Elaborado pelo autor 

 

4.1.4 Roteiro para recuperação de diagrama de sequência 
 

Tabela 31 - Descrição do roteiro da atividade "Gerar código abstrato" 

Atividade Gerar Código Abstrato 

Roteiro 1. Abra o visual studio, e na janela de “explorador da solução” 

Identificar classes que manipulam as classes identificadas 

correspondentes aos requisitos (Classes de controller e services), 

ex: public class [Nome da classe][Service]). 

2. Para cada classe identificada, gerar um código abstrato de cada 

classe com as seguintes considerações: 

a. Uma classe possui 0 ou muitas declarações seguida de 0 ou 

muitas instruções. 

b. Declarações são declarações de atributos, métodos e 

construtores, a partir de cada declaração, gere sua sintaxe 



71 
 

 

que deve ser [nome da classe]. [nome do 

método].[declaração]) 

c. Instruções são alocações, assinatura e invocações de 

métodos, para cada instrução, gere sua sintaxe que deve 

ser [nome da classe]. [nome do método].[instrução]. 

d. (obs) Desconsidere condições, loops, retornos e 

importações. 

Fonte: Elaborado pelo autor 

 

Tabela 32 - Descrição do roteiro da atividade "Gerar diagrama de fluxo de objetos" 

Atividade Gerar diagrama de fluxo de objetos 

Roteiro 1. Abra o Microsoft Visio 

2. Crie um novo grafo 

3. Identifique as declarações de objetos e instruções do código 

abstrato 

4. Crie um nó no selecionando na caixa de ferramentas do Visio 

para cada objeto declarado e para cada instrução que modifique 

o fluxo deste objeto 

5. Para cada relacionamento entre as declarações e as instruções 

que modificam este objeto, crie uma ponta entre os nós 

selecionando caixa de ferramentas do Visio. 

Fonte: Elaborado pelo autor 

 

Tabela 33 - Descrição do roteiro da atividade "Construir diagrama de sequência" 

Atividade Construir diagrama de sequência 

Roteiro 1. Crie uma tabela com as seguintes colunas (Linha, Chamada, 

Fontes, Alvos) 

2. Analisar chamadas de métodos no OFG, defina o objeto alvo 

(objeto que chama o método) e os alvos (objetos influenciados 

pela chamada do método)  

3. Analisar o método, mapeando as ocorrências de loops e 

condições 



72 
 

 

4. Inserir marcas (if, loop, alt, opt ) entre o grupo de mensagens 

respectivos.  

Fonte: Elaborado pelo autor 

 

 

4.1.5 Roteiro para construção de uma descrição arquitetural. 
 

 

Tabela 34 - Descrição da atividade "Construir descrição arquitetural" 

Atividade Construir descrição arquitetural (Apêndice 1) 

Tarefas 1. Baixar o documento de modelo de descrição arquitetural 

que se encontra no site da ISO 42010 

2. Abrir o documento no Microsoft Word 

3. Remover as instruções do documento 

4. Definir o tipo de descrição arquitetural 

5. Definir o propósito do sistema 

6. Definir as características do sistema 

7. Definir os Stakeholders 

8. Inserir a visão computação 

9. Inserir os modelos da visão computação 

10. Inserir o ponto de vista computacional 

11. Inserir os modelos do ponto de vista computacional 

12. Escrever notas com considerações sobre o documento 

13. Inserir a bibliografia 

14. Remover outros itens que não foram descritos no 

documento. 

Artefato de 

entrada 

Modelos da visão computação 

Artefato de saída Descrição Arquitetural 

Fonte: Elaborado pelo autor 

 



73 
 

 

4.1.6 Roteiro para especificação da visão computação 
 

Tabela 35 - Descrição do roteiro da atividade "Construir estrutura da visão computação" 

Atividade Construir estrutura da visão computação (Item 4.1.5 do apêndice 1) 

Roteiro 1. Abra o software StarUML. 

2. Crie um novo projeto chamado: “Descrição arquitetural” 

3. Crie um pacote com o nome “Especificação visão computação” 

4. Crie um diagrama de classes e insira o pacote criado no passo 

3. 

5. Crie quatro pacotes dentro do pacote criado no passo 3 com os 

nomes: “Template de objetos”, ”Assinaturas de interface”, 

”Template de interfaces”, ”Tipos de dados”    

Fonte: Elaborado pelo autor 

 

Tabela 36 - Descrição do roteiro da atividade "Construir o diagrama de template de objetos" 

Atividade Construir o diagrama de template de objetos (Item 4.1.2 do apêndice 

1) 

Roteiro 1. Abra o projeto “Descrição arquitetural” 

2. Crie um diagrama de classes dentro do pacote chamado 

“Especificação visão computação” chamado “Template de 

objetos” 

3. Identifique todas as classes correspondentes aos casos de uso 

recuperados na etapa 1 do processo. 

4. Para cada classe identificada no passo 3, crie uma classe com 

o estereótipo <<CV_Object>> 

Fonte: Elaborado pelo autor 

 

Tabela 37 - Descrição do roteiro da atividade "Construir o diagrama de assinaturas" 

Atividade Construir o diagrama de assinaturas (Item 4.1.5 do apêndice 1) 



74 
 

 

Roteiro 1. Abra o projeto “Descrição arquitetural” 

2. Crie um diagrama de classes dentro do pacote chamado 

“Especificação visão computação” chamado “Diagrama de 

assinaturas” 

3. Identifique todas as classes correspondentes aos casos de uso 

recuperados na etapa 1 do processo. 

4. Para cada classe identificada no passo 3, crie uma classe com 

o estereótipo <<CV_Signature>> 

5. Para cada uso correspondente as classes identificadas no 

passo 3, crie um método dentro da classe <<CV_Signature>> 

correspondente. 

Fonte: Elaborado pelo autor 

 

Tabela 38 - Descrição do roteiro da atividade "Construir o diagrama de tipo de dados" 

Atividade Construir o diagrama de tipo de dados (Item 4.1.4 do apêndice 1) 

Roteiro 1. Abra o projeto “Descrição arquitetural” 

2. Crie um diagrama de classes dentro do pacote chamado 

“Especificação visão computação” chamado “Diagrama de tipos 

de dados” 

3. Identifique as classes do esquema orientado à objetos. 

4. Identifique os parâmetros das interações dos diagramas de 

sequência que o nome seja diferente de alguma classe do 

esquema orientado à objetos, e que não seja tipo primitivo. 

5. Para cada classe identificada no passo 3, crie uma classe com 

o estereótipo <<CV_DataType>>, e copie os atributos de forma 

idêntica. 

6. Para cada item identificado no passo 4, crie uma classe com o 

mesmo estereótipo do passo 5. 

7. Se houver algum relacionamento de herança ou agregação no 

esquema orientado à objetos, copie o mesmo relacionamento 

entre as classes correspondentes no diagrama de tipos de 

dados  



75 
 

 

Fonte: Elaborado pelo autor 

 

Tabela 39 - Descrição do roteiro da atividade "Construir o diagrama de comportamento" 

Atividade Construir o diagrama de comportamento 

Roteiro 1. Abra o projeto “Descrição arquitetural” 

2. Selecione uma operação do diagrama de assinaturas. 

3. Crie um diagrama de sequência com o mesmo nome da 

operação selecionada no passo 2. 

4. A partir do diagrama de sequência recuperado da operação na 

etapa 1, especifique o novo diagrama de sequência nas 

seguintes considerações 

1. Para cada ciclo de vida, crie um ciclo de vida com o 

mesmo nome, mas com o estereótipo de 

<<CV_Object>>, para correlacionar com o objeto criado 

no diagrama de “Templates de objetos”. 

2. Copie o fluxo de forma idêntica ao diagrama de 

sequencias recuperado, incluindo loops e condições. 

3. Copie as mensagens e iterações entre os ciclos de vida 

de forma identica ao diagrama recuperado.  

Fonte: Elaborado pelo autor 

 

4.1.7 Resultados Obtidos 
 

A aplicação do roteiro foi bem-sucedido, pois foi possível construir uma 

descrição arquitetural da visão computacional da parte do sistema analisado e foi 

possível identificar os locais de impacto pela implementação dos requisitos informados 

pelo cliente. Os resultados desta aplicação estão no apêndice deste trabalho, que é a 

descrição arquitetural do software. Uma facilidade para a aplicação do processo neste 

caso´, dá-se pelo fato da facilidade de entendimento do código fonte, pois seguia os 

padrões de escrita da linguagem, facilitando a identificação dos serviços referentes às 

entidades de domínio. Um obstáculo para a aplicação foi a necessidade de aplicar o 

processo manualmente, sendo que nenhum passo foi possível de automatizar através 

de ferramentas de análise de código ou construção da descrição arquitetural. A 



76 
 

 

descrição arquitetural foi construída e adaptada com base no modelo de documento 

fornecido pelo site da ISO 42010. Apesar da norma citar a necessidade da validação 

da arquitetura, está atividade não foi possível de realizar pois o roteiro é focado 

apenas na etapa de recuperação e especificação da arquitetura. 



77 
 

 

5 CONCLUSÕES 
 

A contribuição deste trabalho foi apresentar quais informações do código fonte 

são necessárias para realizar um processo de documentar arquiteturas de softwares 

que já foram construídos. Entre as aplicações deste trabalho, estão sistemas open-

source muito utilizados e bem avaliados por comunidades de desenvolvimento de 

software, e softwares legados de organizações, entretanto, a aplicabilidade deste 

trabalho depende das técnicas de engenharia reversa utilizadas, mas às técnicas 

podem ser alteradas, possibilitando identificar outras informações para contribuir com 

a descrição arquitetural, desde que sigam o modelo Horseshoe. Foi identificado que 

as informações obtidas a partir dos modelos construídos neste trabalho, são alguns 

dos elementos que possibilitam a construção de uma fábrica para tratamento de 

código open-source no futuro.  

Os resultados deste trabalho mostram que o objetivo foi alcançado, sendo 

possível criar uma descrição arquitetural dos serviços computacionais de um sistema 

a partir do código fonte, permitindo que a equipe de desenvolvimento e novos 

integrantes utilizem um meio comum para entender quais serviços o software oferece 

e como estes serviços estão organizados e como foram implementados, com isso, é 

possível analisar se o sistema atende precisamente as necessidades de futuros 

Stakeholders e medir o impacto de futuras mudanças no software durante o seu ciclo 

de vida, sendo assim, a descrição arquitetural atendeu as necessidade dos 

stakeholders do projeto.  

As limitações para este trabalho, são relacionadas com as limitações das 

técnicas de engenharia reversa utilizadas, pois suas aplicações são limitadas apenas 

a softwares orientados à objetos e a banco de dados relacionais, além disso, caso o 

software não utilize adequadamente os conceitos da orientação objeto e padrões de 

projeto, haverá dificuldades em aplicar as técnicas apresentadas, sendo assim, será 

necessário utilizar outras técnicas que atendam às necessidades de cada software 

que será analisado. 

 

 



78 
 

 

  



79 
 

 

REFERÊNCIAS BIBLIOGRÁFICAS 
 

BORSOI, B. Arquitetura de processos aplicada na integração de fábricas de 

software. Tese (doutorado em engenharia elétrica) – Universidade de São Paulo. 

2008. 

BREIVOLD, H.; CRNKOVIC, L.; LARSSON, M. A Systematic Review of Software 

Architecture Evolution Research. 2011. 

CHADHA, D. Emergence of Software Product Line. International Journal of 

Computer Applications® (IJCA). 2012 

DIAS, L.D. Método de instanciação de uma arquitetura de processos aplicado em 

fábrica de software. Dissertação (Mestrado em Engenharia Elétrica) – Universidade 

de São Paulo. 2010 

DING, W.; et al. How Do Open Source Communities Document Software 

Architecture: An Exploratory Survey. Engineering of Complex Computer Systems 

(ICECCS). 2014 

Information technology — Open Distributed Processing — Use of UML for ODP system 

specifications. ISO/IEC/IEEE 19793. 2015. 

KILOV, H. et al. The Reference Model of Open Distributed Processing: 

Foundations, experience and applications. Computer Standards & Interfaces. v. 35. 

.2012 

LAGUNA, M.A.; HERNANDEZ, C. A Software Product Line Approach for E-

Commerce Systems. E-Business Engineering (ICEBE). 2010. 

LININGTON, P.; MILOSEVIC, Z.; TANAKA, A.; VALLECILLO, A. Building Enterprise 

Systems with ODP – An Introduction to Open Distributed Processing. Boca 

Raton: Chapman and Hall/CRC. 2011. 

PEREIRA, C.; MARTINEZ, L.; FAVRE, L. Recovering Use Case Diagrams from 

Object Oriented Code: an MDA-based Approach. Information Technology: New 

Generations (ITNG), 2011 



80 
 

 

RAMANATHAN, S.; HODGES, J. Reverse Engineering Relational Schemas to 

Object-Oriented Schemas. 1996. 

ROZANSKI, N.; WOODS E. Software Systems Architecture: Working With 

Stakeholders Using Viewpoints and Perspectives. Boston: AddisonWesley. 2005. 

ROMERO, J.R.; VALLECILLO, A. Modeling the ODP Computational Viewpoint with 

UML 2.0: The Templeman Library Example. Enschede: Workshop on ODP for 

Enterprise Computing. 2005 

Systems and Software Engineering -- Architecture Description. ISO/IEC/ IEEE 42010. 

2011.  

Software Engineering ߝ Software Life Cycle Processes ߝ Maintenance. ISO/IEC 

14794. 2006. 

TONELLA, P. Reverse Engineering of Object Oriented Code. ICSE '05 Proceedings 

of the 27th international conference on Software engineering. 2005. 

TRIPATHY, P.; NAIK, K. Software Evolution and Maintenance: a practitioner’s 

approach. Hoboken: John Wiley & Sons, Inc. 2014.  



81 
 

 

APENDICE A – Descrição arquitetural Arquitetura computacional para Sistema 
de ecommerce. 



82 
 

 

 

 

 

 

 

Descrição arquitetural  

Arquitetura computacional para  

Sistema de ecommerce 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 
 

 

Conteúdo 
 

1 Introdução 
 

Este capítulo descreve itens de informações introdutórias da descrição 

arquitetural, incluindo a identificação e as informações complementares. 

 

1.1 Informação de identificação da arquitetura 
 

A arquitetura descrita neste documento é a arquitetura no ponto de vista 

computacional do ODP de um Sistema de comércio eletrônico (E-commerce), 

apresentando as funcionalidades que o Sistema possuí, o comportamento e estrutura 

destas funcionalidades 

 

1.2 Histórico de versões 
 

Data Versão Descrição Autor 

10/02/2016 1.0 Criação do documento Leonardo Gasparini Romão 

    

 

1.3 Contexto 
 

O Cenário do sistema desta descrição arquitetural, envolve uma organização 

do setor comercial que deseja inserir um sistema de comércio eletrônico em seu 

ambiente, entretanto, esta organização não possuí uma área de TI preparada para 

desenvolvimento de aplicações corporativas, portanto, foi necessário que esta 

empresa contratasse os serviços terceirizados de outra empresa especializada em 

soluções e consultoria em TI. 

A empresa contratada fechou um acordo para criar o sistema, e como solução, 

apresentou um sistema de comércio eletrônico open-source, afirmando que o sistema 

apoiava diversas funcionalidades que a organização desejava e que permitiam 

diversas configurações para estar de acordo com as necessidades da organização 



84 
 

 

após ler às informações que o sistema possuía em seu site e testar o sistema em seu 

ambiente. O sistema apresenta as seguintes características técnicas 

 

Outras informações 
 

 O sistema é open source  

 O paradigma do sistema Orientado à Objetos. 

 O sistema é uma aplicação web, utilizando o framework ASP.NET MVC que utiliza 
a linguagem C#. 

 O sistema utiliza um banco de dados relacional, criado na tecnologia SQL 2008 
R2. 

 O sistema, é hospedado no servidor IIS. 

 Como artefatos do sistema, o desenvolvedor possuí o código fonte e o script de 
criação do esquema SQL do banco de dados 

 

2 Stakeholders e preocupações 
 

Este capítulo contém informações apresentando as partes interessadas da 

arquitetura, suas respectivas preocupações, e à rastreabilidade das preocupações 

com as partes interessadas.  

 

2.1 Stakeholders 
 

Os Stakeholders deste projeto são: 

 Desenvolvedores do Sistema; 

 Analistas do sistema 

 Analistas de manutenção do sistema 

 Arquiteto de software  

 Dono do projeto 
 

2.2 Preocupações 
 

 Identificar as entidades de domínio do sistema 

 Identificar e entender as funcionalidades do Sistema 

 Mapear as características do sistema 

 Entender a estrutura e comportamento do Sistema 



85 
 

 

 Modificar, adaptar ou evoluir o Sistema 

 Realizar manutenções no Sistema 
 

2.3 Traceabilidade Preocupações – Stakeholders  
 

Preocupações Equipe de 

desenvolvimento 

Cliente do 

projeto 

Entender as funcionalidades do 

Sistema 

 

X X 

Mapear das características do 

sistema 

X X 

Entender a estrutura e 

comportamento do Sistema 

 

X - 

Modificar, adaptar ou evoluir o 

Sistema 

 

X - 

Realizar manutenções no Sistema 

 

X - 



86 
 

 

3 Pontos de vista 

3.1 Ponto de vista Computacional 
 

3.2 Visão Geral 
 

3.3 Preocupações e Stakeholders 

3.3.1 Preocupações 

 Mapear as características do sistema 

 Entender a estrutura e comportamento do Sistema 

 Modificar, adaptar ou evoluir o Sistema 

 Realizar manutenções no Sistema 
 

3.3.2 Stakeholders típicos 

 Desenvolvedores do Sistema; 

 Analistas do sistema 

 Analistas de manutenção do sistema 

 Arquiteto de software 
 

3.4 Tipos de modelos 
 

3.5 Modelo de objetos 
O modelo de objetos apresenta de forma geral, quais são os objetos computacionais 

especificados. 

 

3.5.1 Convenções do modelo de objetos 

As convenções deste modelo são baseadas na norma ISO 19793 UML4ODP ou Use 

of Uml for ODP 

 

3.6 Modelo de interfaces 
 

O modelo de interfaces, apresenta quais interfaces os objetos computacionais 

possuem e como eles estão relacionados. 



87 
 

 

 

3.6.1 Convenções do modelo de interfaces 

As convenções deste modelo são baseadas na norma ISO 19793 UML4ODP ou Use 

of Uml for ODP 

 

 

3.7 Modelo de assinaturas de interface 
 

O modelo de assinatura de interfaces, representa quais assinaturas cada interface 

possuí, mostrando quais os contratos ou funções que cada interface oferece, 

detalhando as interfaces especificadas no modelo de template de interfaces 

 

3.7.1 Convenções do modelo de assinaturas de interface 

As convenções deste modelo são baseadas na norma ISO 19793 UML4ODP ou Use 

of Uml for ODP 

 

3.8 Modelo de tipos de dados 
 

O modelo de tipos de dados apresenta a estrutura e conteúdo dos objetos que são 

manipulados através das interfaces e funcionalidades especificadas no ponto de vista 

computacional. 

 

3.8.1 Convenções do modelo de tipos de dados 

As convenções deste modelo são baseadas na norma ISO 19793 UML4ODP ou Use 

of Uml for ODP 

 

3.9 Notas 



88 
 

 

4 Visões 
 

4.1 Visão: Computação 
 

 

  



89 
 

 

4.1.1 Modelos 
 

 

 

4.1.2 Modelo de objetos 

 

  



90 
 

 

4.1.3 Modelo de interfaces 

 

4.1.4 Modelo de tipos de dados 

 

 

 



91 
 

 

4.1.5 Modelo de assinaturas de interface 

 

 

 



92 
 

 

4.1.6 Comportamento da assinatura de interface (AddressAdd) 

<<CV_Object>>
Custommer
Controller

if

CurrentCustomer.IsRegistred()

Return(Unauthorized)

if

ModelState.IsValid()

<<CV_Object>>
CustomerService

UpdateCostumer(Costumer)

Return (CustomerAddress)

<<CV_Object>>
CountryService

getAllCountries()

LoadCountries
Return(model)

PrepareModel()

 



93 
 

 

REFERÊNCIAS BIBLIOGRÁFICAS 
 

BORSOI, B. Arquitetura de processo aplicada na integração de fábricas de 

software. Tese (doutorado em engenharia elétrica) – Universidade de São Paulo. 

2008. 

BREIVOLD, H.; CRNKOVIC, L.; LARSSON, M. A Systematic Review of Software 

Architecture Evolution Research. 2011. 

CHADHA, D. Emergence of Software Product Line. International Journal of 

Computer Applications® (IJCA). 2012 

DIAS, L.D. Método de instanciação de uma arquitetura de processos aplicado em 

fábrica de software. Dissertação (Mestrado em Engenharia Elétrica) – Universidade 

de São Paulo. 2010 

DING, W.; et al. How Do Open Source Communities Document Software 

Architecture: An Exploratory Survey. Engineering of Complex Computer Systems 

(ICECCS). 2014 

Information technology — Open Distributed Processing — Use of UML for ODP system 

specifications. ISO/IEC/IEEE 19793. 2015. 

KILOV, H. et al. The Reference Model of Open Distributed Processing: 

Foundations, experience and applications. Computer Standards & Interfaces. v. 35. 

.2012 

LAGUNA, M.A.; HERNANDEZ, C. A Software Product Line Approach for E-

Commerce Systems. E-Business Engineering (ICEBE). 2010. 

LININGTON, P.; MILOSEVIC, Z.; TANAKA, A.; VALLECILLO, A. Building Enterprise 

Systems with ODP – An Introduction to Open Distributed Processing. Boca 

Raton: Chapman and Hall/CRC. 2011. 

PEREIRA, C.; MARTINEZ, L.; FAVRE, L. Recovering Use Case Diagrams from 

Object Oriented Code: an MDA-based Approach. Information Technology: New 

Generations (ITNG), 2011 

RAMANATHAN, S.; HODGES, J. Reverse Engineering Relational Schemas to 

Object-Oriented Schemas. 1996. 



94 
 

 

ROZANSKI, N.; WOODS E. Software Systems Architecture: Working With 

Stakeholders Using Viewpoints and Perspectives. Boston: AddisonWesley. 2005. 

ROMERO, J.R.; VALLECILLO, A. Modeling the ODP Computational Viewpoint with 

UML 2.0: The Templeman Library Example. Enschede: Workshop on ODP for 

Enterprise Computing. 2005 

Systems and Software Engineering -- Architecture Description. ISO/IEC/ IEEE 42010. 

2011.  

Software Engineering ߝ Software Life Cycle Processes ߝ Maintenance. ISO/IEC 

14794. 2006. 

TONELLA, P. Reverse Engineering of Object Oriented Code. ICSE '05 Proceedings 

of the 27th international conference on Software engineering. 2005. 

TRIPATHY, P.; NAIK, K. Software Evolution and Maintenance: a practitioner’s 

approach. Hoboken: John Wiley & Sons, Inc. 2014. 


