UNIVERSIDADE DE SAO PAULO

LEONARDO GASPARINI ROMAO

PROCESSO DE DESCRICAO ARQUITETURAL DE SOFTWARE UTILIZANDO
TECNICAS DE ENGENHARIA REVERSA

Sao Paulo

2016

LEONARDO GASPARINI ROMAO

PROCESSO DE DESCRICAO ARQUITETURAL DE SOFTWARE UTILIZANDO
TECNICAS DE ENGENHARIA REVERSA

Monografia apresentada ao PECE -
Programa de Educacédo Continuada da
Universidade de Séo Paulo, como parte
dos requisitos para obtencdo do titulo
de Especialista em Tecnologia da
Informacao.

Area de Concentracgao:
Tecnologia da Informacéo

Orientador:
Prof. Dr. Jorge Luis Risco Becerra

Sao Paulo

2016

FICHA CATALOGRAFICA

Romé&o, Leonardo Gaspatrini

Técnicas de engenharia reversa em um processo de descri¢do arquitetural —
Séo Paulo, 2015;

N° de paginas: 94

Monografia (MBA em Tecnologia da Informacao) - Escola Politécnica da
Universidade de S&o Paulo. Programa de Educacéo Continuada em Engenharia.

Orientador: Prof. Dr. Jorge Luis Risco Becerra.

1.Arquitetura de Software; 2. Engenharia Reversa; 3. Descricao Arquitetural

AGRADECIMENTOS

Agradeco primeiramente ao Grupo de Fabrica de Software do Laboratorio de
Tecnologia de Software por me dar a chance de realizar o curso do MBA e ao
professor Jorge Luis Risco Becerra por todo o esforgo na orientacdo deste trabalho, e
agradeco também aos meus pais, aos professores Ana Claudia Rossi, Juan Felipe
Restrepo Naranjo e Leonardo Dominguez Dias, aos meus amigos Laryssa Machado
e iris Xavier, & Ana A. Wertzner e todas as pessoas que me ajudaram a fazer este

trabalho.

RESUMO

A arquitetura de software tem se tornado um fator cada vez mais importante
para o desenvolvimento e evolucdo de novos softwares, tanto pelo fato de alinhar o
software ao modelo de negdcio ao qual ele esté inserido, como também para criar
sistemas que sejam adaptaveis as rpidas e constantes mudancas do negdcio.
Apesar de sua importancia, a documentacdo arquitetural ndo é um item priorizado
pelas equipes de desenvolvimento de software, como equipes de desenvolvimento de

softwares open-source.

Analisando os softwares de coddigo aberto, tanto as organizacbes que
trabalham para evoluir o software, como as equipes que adaptam ou realizam
manutencdes nestes softwares ndo criam ou nao disponibilizam informacdes
arquiteturais do sistema, nem utilizam um processo especifico de adaptacéo baseado
em arquitetura, e técnicas que permitam esta evolucdo de forma que ndo corrompa

sua arquitetura.

Para realizar modificacdes no software, € comum que as equipes gastem tempo
entendendo o software analisando seu codigo fonte, fazendo com que o0s
desenvolvedores tenham um conhecimento especializado. Entretanto, outros
envolvidos no projeto e novos integrantes da equipe terao dificuldade de compreensao
do sistema, pois ndo possuem este conhecimento, para isso, uma forma de
compreender o sistema, de forma que outras partes possam discutir sobre, é utilizar
a engenharia reversa para criar modelos que representem o codigo fonte, para que

seja possivel que as discussdes sobre o sistema sejam mais efetivas.

Este trabalho visa propor um processo para construir uma descricao
arquitetural contendo modelos que representem a arquitetura do software. A
metodologia para construcdo deste trabalho foi primeiro identificar as informacgdes
necessarias e 0s modelos necessarios para construir uma descricdo arquitetural na
visdo computacdo. Em seguida, foi necessario construir um processo baseando nos
requisitos da primeira fase do modelo Horseshoe, aplicando 3 técnicas de engenharia
reversa no software: Uma técnica para obter um diagrama de classes, uma técnica
para obter um diagrama de caso de uso e uma técnica para obter um diagrama de
sequéncia e por ultimo, aplicar 0 processo para construir uma descri¢cdo arquitetural

de um e-commerce de cddigo aberto.

ABSTRACT

Software architecture has become an increasingly important factor for the
development of new software, both because of aligning the software to the business
model to which it is inserted, as well as to create systems are adaptable to the rapid
and constant business changes. Despite its importance, the architectural
documentation is not an item prioritized by software development teams, as open-

source development teams.

Analyzing the context of open-source software, both organizations working to
evolve the software, as well as the teams that adapt or perform maintenance on these
software do not create or provide architectural information system, nor utilize a specific
adaptation process based on architecture, and techniques that allow this development

in a way that doesn't corrupt its architecture.

To make changes to the software, it is common that teams spend time studying
and understanding the software's source code, so that developers have a specialized
knowledge. However, other people involved in the project and new team members will
find it difficult to comprehend on the system, because they do not have this knowledge,
for it is a way to understand the system, so that other parties can discuss, is to use
reverse engineering to create models representing the source code, so it's possible

that the discussions about the system be more effective.

This paper aims to propose a process to create these models representing the
system architecture. The methodology for the construction of this paper was first
identify the necessary information and models to create an architectural description in
computational viewpoint. Second, it was necessary to create a process thought the
first phase of horseshoe model applying three software reverse engineering
techniques: A technique to recover a class diagram, a technique to recover an use
case diagram, a technique to recover a sequence diagram, and for last , apply the

process to create an architectural description of an open-source ecommerce

SUMARIO

1 INTRODUGAOD ..ottt anas 14
I R 0] | {4 o PSPPI 14
2 e o o] 1= 1 - 15
R T @ T] =1 4 A7 TP 16
N LU S A o= L1 Y- T 16
1.5 MELOUOIOGIA .uuuuiiiiiiiiiiiiii e 17
1.6 Estrutura do Traballo ... 18
2 A ENGENHARIA REVERSA E ARQUITETURA DE SOFTWAREcccccee.... 20
2.1 ENQeNnharia REVEISA ..o 20
211 DEfiNICA0 € ODJELIVOSvviviiiiiiiiiiiiiiitiii bbb 20
2.1.2 TECNICAS. ..o i e 21
2.2 Arquitetura de SOftWaArE.......ccooiiiiiiiii e 23
221 DEfiNICA0 € ODJELIVOSvviviiiiiiiiiiiiiiitiii bbb 23
222 ElementoS ArqQUItETUIAISuuuuuriiiiiiiiiiiiiiiiiiiiete bbb 24
2.3 DeSCriCa0 ArquUItELUTAlccooiiiiiiiiie e 24
231 DefiNICA0 € APlICAGOES .. .uuuiee et 24
2.3.2 [T 1 OSSR 26
2.3.3 AV ToTe (=] (o AN {0 011 =] (U = 1N 27
2.3.4 (O70] 1 (=15 oTo] gTo (=T od - VTP 28
2.35 Regra de CorreSPONUENCIA..........ccuuuuuiiiie e eeaaans 28
2.3.6 (oo (o= =T |81 =] (0= | 28
2.3.7 Atributos de qualidadeccooviviiiiiiii 29

2.4 UMLAODP ... 30

241 Linguagens de descrigao arquiteturaleeveieimiiiiiiiiiiiiiiiiiee 30

24.2 (O70] 01 (=) (o TP 31
2.4.3 PONTOS 08 VISTA......eiiieeiiieee et 31
2.5 Relacao entre a engenharia reversa e a arquitetura de software.............. 34
3 PROCESSO DE DESCRICAO ARQUITETURALcooiviiiicieciecece e, 37
3.1 Etapa l: Engenhariareversa pararecuperacao de Modelos..................... 40

3.1.1 Engenharia reversa de esquemas relacionais para esquemas orientado

= 0] o] 1= (0 1= PO 41
3.1.1.1. DefiNiGA0 da tECNICA.ci ittt 41
3.1.1.2. APlICACA0 A tECNICAcei ittt 43

3.1.2 Engenhariareversa para recuperacao de diagramas de caso de uso ..47

3.1.2.1. DefiNiCA0 da tECNICA.......ccceeiiieeiiiie e a7
0 27 AN o] [or= Yoo o F= W I =T o o1 o7 TP 49
3.1.3 Engenhariareversa para recuperacao de diagramas de sequéncia......51
3.1.3.1. DefiniCA0 da tECNICA........cceeiieiiiiice e 51
G0 IRC T2 AN o] [To7= Vo= Lo Jo F= W I =Tod o[o U PO 52
3.2 Etapa 2: Construcdo de uma descrigdo arquitetural.............ooooeeeeeeeeeen. 55
3.2.1 Construir Modelos da Vis&0 COMPULAGE0ccoeeveeeieiieiieeeeeeeeeeeeeeee 58
3.3 Conclus@0 do CaPItUlO ccoooeeeeeeeeee 61
4 ROTEIROS DO PROCESSOccoiiiiiiiiiiiiiee et 62
4.1.1 Aplicacdo do Processo e Especificagdo do ROteiroccceeevvvvveinennnnn. 63
4.1.2 Roteiro darecuperacédo do esquema orientado a objetosccccce...... 64
4.1.3 Roteiro pararecuperacao de diagrama de caso de USOccceeevveeeeennn. 69

4.1.4 Roteiro pararecuperacao de diagrama de seqUéncia........ccccuvvvvuneeennnn. 70

4.1.5 Roteiro para construgcao de uma descrigéo arquitetural...........ccccoee.... 72

4.1.6 Roteiro para especificagdo da viSdo COmMputagaocccceevvvvvveeereeeennnnnn. 73
4.1.7 Resultados OBtidOScoooiiiiiiiiiiiiiie e 75
5 CONCLUSOES ..ottt 77
REFERENCIAS BIBLIOGRAFICAS ...t 79

APENDICE A - DESCRICAO ARQUITETURAL ARQUITETURA COMPUTACIONAL
PARA SISTEMA DE ECOMMERCE.........cooiiiiii e 81

LISTA DE FIGURAS

Figura 1 - Diferenca entre engenharia tradicional e engenharia reversa................... 21
Figura 2 - Modelo Conceitual da descrigao arquiteturalccccvvvviiiiieiiininnninnne 26
Figura 3 - Qualidade de uma descrigao arquitetural eficientecccccvvvviininnnnnee 29
Figura 4 - Pontos de Vista do RM-ODPoouiiiiiiiccieie e 32
Figura 5 - Adaptacdo do modelo Horseshoe para o modelo proposto 38

Figura 6 - Processo de construcdo de uma descri¢cao arquitetural de sistemas através

da €NGENNAIIE TEVEISAcceee oo 39
Figura 7 - Etapas do processo de engenharia reVersa.........ccoooeeeeevveeeiviuiieeeeeeeenennnns 41
Figura 8 - Processo de recuperacéo do esquema orientado a objetos 43
Figura 9 - Algoritmo de Recuperacéo de Diagramas de Caso de USO...................... 48
Figura 10 - Processo de recuperacéo de diagramas de caso de USOccceeeuees 50
Figura 11 - Processo de recuperacao de diagrama de sequéncia............ccceeeeeeeenens 53
Figura 12 - Processo de contrucdo da descricdo arquiteturalccceeeeeeeeeeennnnns 57

Figura 13 - Processo de construgao da ViSA0 COMPULAGEDuuvurruvvrrmnieiiiiiiiiiinns 58

LISTA DE TABELAS

Tabela 1 - Descri¢cao da atividade "Construir a lista de tabelas do esquema relacional”

.. 44
Tabela 2 - Descricao da atividade "Identificar Classes de Objetosccccccceeeennnn. 44
Tabela 3 - Descricdo da atividade "Identificar ASSOCIagc0es"ceeeevvvvevvviiiineeeennn. 44
Tabela 4 - Descricdo da atividade "Identificar Herangas"............ccoooeevvvvviiiicenieeennn, 45
Tabela 5 - Descrigcdo da atividade "ldentificar Agregagoes”.........ccccccvvvveviiiiiieeennnnn. 45
Tabela 6 - Descricdo da atividade “Identificar Cardinalidades”c.....ccceeeees 46
Tabela 7 - Descricdo da atividade "Construir o esquema orientado a objetos"......... 46
Tabela 8 - Descricdo da atividade "Gerar codigo abstrato da classe"....................... 50

Tabela 9 - Descricdo da atividade "Aplicar algoritmo de recuperacao de caso de uso”

.. 51
Tabela 10 - Descricao da atividade "Construir diagrama de caso de uso"................ 51
Tabela 11 - Descricao da atividade "Transformar método em codigo abstrato”........ 53

Tabela 12 - Descricdo da atividade "Construir cdigo OFG do codigo abstrato” 54
Tabela 13 - Tabela de perfil de conceitos ODP € UMLcccvviiiiiiiiiiiiieiiiccee e, 55
Tabela 14 - Descricao da atividade "Construir descricdo arquitetural”...................... 57
Tabela 15 - Descricao da atividade "Construir uma estrutura da visdo computacdo"58
Tabela 16 - Descricao da atividade "Construir o diagrama de template de objetos" .59

Tabela 17 - Descricao da atividade "Construir o diagrama de templates de interfaces”

.. 59
Tabela 18 - Descricao da atividade "Construir o diagrama de assinaturas".............. 60
Tabela 19 - Descricao da atividade "Construir diagrama de tipo de dados".............. 60

Tabela 20 - Descricdo da atividade "Construir o diagrama de comportamento da
2R TS F=LLU] = PP UUTPRPPRIN 61

Tabela 21 - Descri¢ao do roteiro da atividade "Construir a lista de tabelas do esquema

=] F=Tod 0] o -1 LU 64
Tabela 22 - Descricdo do roteiro da atividade "Identificar classes de objetos".......... 65
Tabela 23 - Descricdo do roteiro da atividade "Identificar associagdes" 66
Tabela 24 - Descricao do roteiro da atividade "Identificar Herangas"........................ 67
Tabela 25 - Descri¢ao do roteiro da atividade "Identificar Agregagdes”.................... 67

Tabela 26 - Descricao do roteiro da atividade "Identificar cardinalidades"................ 68

Tabela 27 - Descri¢ao do roteiro da atividade "Construir esquema orientado a objetos"

Tabela 28 - Descricao do roteiro da atividade "Gerar codigo abstrato"..................... 69
Tabela 29 - Descricédo do roteiro da atividade "Executar algoritmo de recuperacao de
(0= LYo 0 [N1 1S 0 RSP 70
Tabela 30 - Descrigéo do roteiro da atividade "Gerar codigo abstrato”..................... 70
Tabela 31 - Descricao do roteiro da atividade "Gerar diagrama de fluxo de objetos"71
Tabela 32 - Descri¢ao do roteiro da atividade "Construir diagrama de sequéncia”...71
Tabela 33 - Descricdo da atividade "Construir descrigao arquitetural”...................... 72
Tabela 34 - Descricdo do roteiro da atividade "Construir estrutura da visao
(o70] 1] 011 ¢= To¥= Lo 1PN 73
Tabela 35 - Descricdo do roteiro da atividade "Construir o diagrama de template de
OB tOS .. 73
Tabela 36 - Descricao do roteiro da atividade "Construir o diagrama de assinaturas”

Tabela 38 - Descricdo do roteiro da atividade "Construir o diagrama de
(o7] 1] 010] 7= 0 4[] 01 (0 PP 75

LISTA DE ABREVIATURAS E SIGLAS

RM-ODP Reference Model — Open Distribuited Systems

MVC Model-View-Controller

BPMN Business Process Model Notation
UML Unified Modeling Language

SQL Structured Query Language

OFG Object Flow Graph

UML4ODP Use of UML for ODP system

14

1 INTRODUCAO

1.1 Contexto

Os modelos de negocio das organizacfes mudam rapidamente e constantemente,
para se manter no mercado com novas oportunidades de negécio. Com isso, a
capacidade de evoluir um software para adequa-lo as mudancas dos modelos de
negocio organizacionais em um curto tempo é uma necessidade critica das
organizacdes, tendo em vista que, os softwares tornaram-se uma das principais
ferramentas de apoio aos modelos de negécios das organizacbes. De acordo com
Breivold, Crnkovic e Larsson (2012), ha muito tempo, as organiza¢cdes concentram 0s
custos do ciclo de vida do software na evolucdo, para atender as mudancas de

requisitos e novas oportunidades de negécio.

Softwares precisam ser adequados rapidamente para atender o seu papel na
organizacao e ser relevante aos stakeholders. Um exemplo de sistemas que possuem
a necessidade de se adaptar rapidamente sdo sistemas de comércio eletrénico, que
segundo Laguna e Hernandez (2010), o dominio de aplicagdes como um e-commerce
necessitam de funcdes gerais com variacdes especificas para cada organizacao,

sendo assim, estes softwares precisam de uma estrutura que seja modificavel.

Para que um software tenha a capacidade de apoiar modelos de negdcio que
mudam frequentemente, sua arquitetura precisa ser adaptavel, pois segundo a
afirmacao de Breivold, Crnkovic e Larson (2012), a arquitetura é a base de qualquer
software, sendo assim, um sistema rigido que ndo leva as mudancas em
consideracdo, ndo acompanha as mudancas do modelo de negoécio de sua
organizacdo e tende a morrer pois o software ndo atendera mais ao seu proposito e

perdera sua utilidade.

7

Para implementar mudangas no software, € necessario entender como o
software esta estruturado, sendo assim, € preciso entender a arquitetura do software.
Segundo Breivold, Crnkovic e Larsson (2012), a analise arquitetura possibilita evoluir
um software adequadamente ao ambiente organizacional que ele esta inserido.
Entretanto, entender a arquitetura de um software geralmente é uma tarefa dificil, pois

segundo Chadha (2014), apesar de existirem principios que auxiliam a entender como

15

o software foi construido como abstracdo, modularizacao e a engenharia reversa, as
técnicas que séo criadas a partir destes principios séo limitadas a entender o cédigo

fonte de um software, e ndo sua arquitetura.

Para analisar a arquitetura de um software, € necessario que existam modelos
que representem varias visdes do software, permitindo uma analise mais ampla e
menos detalhada que o codigo fonte. Entretanto, a maioria das equipes de
desenvolvimento néo criam estes modelos, ou ndo utilizam um padrdo para a
construcdo de modelos arquiteturais. Dentro deste cenario estdo as equipes de
desenvolvimento de projetos de codigo aberto. Ding et al (2014) apresentou uma
pesquisa em que, entre 2000 projetos de cddigo aberto, apenas 108 possuiam alguma
documentacdo referente a arquitetura de software e desses projetos, muitos nao
tinham uma estrutura ou ndo estavam detalhados de forma adequada, pois 88.9%

destes projetos utilizavam uma linguagem informal.

1.2 Problema

Como consequéncia da falta de documentacdo arquitetural adequada em
projetos open-source, saber se um software atende as necessidades do modelo de
negécio se torna uma tarefa complexa, porque de acordo com Ding et al (2014),
modelos arquiteturais permitem guardar informacfes de decisdo do projeto que
tenham relacdo com o modelo de negdcio e fornecer informacbes entre os

stakeholders para contribuir com a arquitetura.

A falta de uma descricéo arquitetural torna-se um obstaculo para modificar um
software, porque € incerto saber os pontos de impacto necessarios para adicionar uma
nova funcionalidade sem danificar a arquitetura do software. Para passar este
obstaculo, Laguna e Hernandez (2010) afirmam que sao necessarios modelos que
expressem a arquitetura de um software possibilitando rastrear as caracteristicas e o

impacto das modificagbes em um software ao adicionar uma nova funcgao.

Portanto, € um desafio para as equipes de desenvolvimento evoluir um software
de cbdigo aberto sem danificar a arquitetura, porque o codigo fonte € o Unico artefato
gue expressa fielmente a atual arquitetura de um software de codigo aberto, portanto,

o problema abordado nesta monografia € a necessidade de compreender estes

16

softwares através de modelos que representem sua arquitetura para auxiliar sua

evolucdo para adequa-lo a diferentes ambientes no qual sera inserido.

1.3 Objetivo

O objetivo deste trabalho € propor um processo de constru¢cdo de uma
descricdo arquitetural de softwares na visdo computacdo do modelo RM-ODP. Este
processo utiliza diferentes técnicas de engenharia reversa em diferentes fases do
processo para abstrair modelos do cédigo fonte de um sistema de cddigo aberto que

fornecam informacdes que seréo utilizadas para descrever a arquitetura do software.

O Segundo passo, € realizar a descricdo de um processo para descrever uma
arquitetura do software na visdo computacgdao, utilizando o framework UML4ODP como
modelo para construir a descricdo arquitetural que usa as informacdes recuperadas
do software no primeiro passo mais as informacdes do ambiente no qual ele sera
inserido. A escolha do UML4ODP como linguagem de especificacdo é que por utilizar
diagramas UML para modelar a arquitetura, serdo modelos que provavelmente serdo
mais precisos ao serem analisados por um stakeholder e construidos por um

desenvolvedor.

1.4 Justificativa

Para Breivold, Crnkovic e Larson. (2012), € um requisito de qualidade muito
forte um software em que sua arquitetura seja capaz de apoiar um modelo de negdcio
que muda rapidamente. De acordo com 0s autores, uma organizagcao que possui
softwares que sao ineficientes em evoluir, consequentemente ir4 perder

oportunidades de negécio.

Segundo Chadha (2014), os modelos que representam a arquitetura de
software sdo considerados artefatos importantes para sua evolucdo, porque para
evoluir um software, mesmo que possua uma arquitetura facil de evoluir, é necessario
entender sua arquitetura para saber os pontos de impacto quando as alteracdes forem

implementadas.

Entretanto, as conclusfes feitas pelo trabalho de Ding et al (2014) indicam que
na maioria das comunidades de software de cdédigo aberto, a documentacéo

17

arquitetural ndo é bem vista, porque muitas comunidades sdo compostas por pessoas
gue em alguns casos séo freelancers que possivelmente n&o tiveram o treinamento
adequado e ndo precisam seguir padrées corporativos, além disso, os resultados da
pesquisa mostram que em muitos casos nao foi utilizado em nenhum momento
linguagens de descricdo arquitetural. Portanto, estas conclusdes contradizem a
adocéao da engenharia de software tradicional e a documentacéo destes projetos nao

sao suficientes para entender o software e sua arquitetura.

Segundo a ISO/IEC 14764 (2006), quando a documentacao € insuficiente e o
cadigo fonte é o Unico artefato para manutencao do sistema, € recomendado realizar
a engenharia reversa. Tonella (2005), apresenta uma técnica de engenharia reversa
em softwares orientados a objetos para construcdo de modelos UML, pois séo
modelos mais convencionais utilizados pelas equipes de desenvolvimento de

software.

Porém, a UML por si so € limitada para construir modelos arquiteturais. Mesmo
assim, a UML era adaptada por diversas equipes que utilizavam a linguagem para
representar a arquitetura dos sistemas. Com a grande demanda em utilizar a UML
para representar arquitetura de softwares, foi criado o UML4ODP ou Uso da UML para
Especificacdo de Sistemas ODP e a ISO/IEC 19703, permitindo criar modelos
arquiteturais utilizando a UML (Vallecilo, 2011).

A parte da visdo computacdo deste padrdo serd utilizada neste trabalho,
porque, utilizar linguagens de descricdo arquitetural, padroniza os modelos

arquiteturais, facilitando o entendimento entre diferentes stakeholders.

15 Metodologia

Este trabalho terdo as seguintes fases:

1. Primeira Fase: Levantamento bibliografico dos assuntos necessarios para
desenvolvimento do trabalho.

2. Segunda Fase: Montar o processo de construgdo arquitetural utilizando
técnicas de engenharia reversa e especificacdo de arquitetura de software

analisadas durante a fase um, e utilizar as normas ISO/IEC 19793, ISO/IEC

18

14794 e a ISO/IEC 42010, como base para criar os artefatos necessarios
para obter uma descricéo arquitetural.

3. Terceira Fase: Aplicacdo do processo em um software de comeércio
eletrbnico que sera inserido dentro de uma organizacgao, apresentando seus
desafios, necessidades e objetivos e como o trabalho pretende contribuir
sobre este cenario.

4. Quarta fase: Contextualizacdo e aplicacdo do processo construido e
apresentar os resultados.

5. Quinta fase: Consideracdes finais e trabalhos futuros.

1.6 Estrutura do Trabalho

Esta monografia estd organizada nos seguintes capitulos:

No capitulo 1, é apresentado a introducdo deste trabalho, contextualizando o
escopo em gue este trabalho utiliza, a definicdo do problema deste cenario, o objetivo
deste trabalho que € propor uma solugcédo do problema definido, e a justificativa de

trabalho, apresentando sua contribui¢cdo para a literatura.

O capitulo 2 apresenta os conceitos dos assuntos abordados neste trabalho,
para fundamentacao tedrica para a proposta de solu¢do que sera apresentada, entre

0s assuntos abordados estao:

e Engenharia Reversa;

e Arquitetura de Software;
e Descri¢do Arquitetural;
e Framework UML4ODP;

A partir do capitulo 3, é descrito o processo com as atividades e tarefas
especificado na linguagem BPMN, para resolucdo do problema apresentado no

primeiro capitulo.

O capitulo 4 apresenta o roteiro operacional do processo apresentado no
capitulo 3. Os resultados que sdo obtidos a partir da aplicacdo deste roteiro € a

descricéo arquitetural apresentada no apéndice deste trabalho.

Por ultimo, o capitulo 5, apresenta a conclusdo deste trabalho, mostrando

consideracfes dos resultados que foram obtidos e trabalhos futuros sobre este

19

estudo, seguido pelo apéndice contento a descricdo arquitetural resultante deste
trabalho.

20

2 A ENGENHARIA REVERSA E ARQUITETURA DE SOFTWARE
2.1 Engenharia Reversa

2.1.1 Definicado e Objetivos

Segundo a ISO/IEC 14764 (2016), a engenharia reversa é a recomendacdo
para documentar softwares quando o codigo fonte é a representacdo mais precisa que
se possui. A engenharia reversa € necessaria, pois softwares que possuem um longo
tempo de vida sofrem mudancas para atender novos requisitos de negécio, o que faz
com que estes softwares sejam diferentes do projeto inicial que foi pensado, mas a
documentacdo destes softwares ndo é criada ou atualizada quando ha mudancas.
Tripathy e Naik (2014) afirmam que existem fatores que implicam na necessidade de

realizar a engenharia reversa, estes fatores séo:

e Os programadores originais deixaram a organizacao;

e A linguagem de implementacédo se tornou obsoleta, sendo necessario
migrar para uma nova linguagem,;

e Nao ha documentacao suficiente sobre o sistema,;

e O modelo de negdcio da organizacdo depende do software, e muitas
pessoas ndao sabem como o software funciona;

e A empresa adquiriu 0 sistema como parte de uma aquisicdo maior e
carece de acesso ao cadigo fonte inteiro;

e O sistema requer modificacdes ou melhorias;

e O sistema ndo opera como o esperado;

Ja para Pereira, Martinez e Favre (2011), a engenharia reversa € 0 processo
de analisar artefatos de software disponiveis como requisitos, modelos ou codigos
para extrair informacdes e construir modelos amplos que estejam coerentes com 0
codigo fonte. A figura 1 apresenta a diferenca entre a engenharia reversa e as

metodologias tradicionais de desenvolvimento de software.

21

Figura 1 - Diferenga entre engenharia tradicional e engenharia reversa.

Requisitos Modelos Implementag&o

Engenharia Engenharia

Tradicional Tradicional

Engenharia Engenharia

reeeke Reversa Reversa I
Recuperacao ;-’//
dem.."""u"uu— ecuperagéo
de Modelos

Fonte: Adaptado de Tripathy e Naik (2014).

Conforme a figura mostra, os modelos tradicionais de desenvolvimento
possuem um processo de implementar o codigo fonte a partir de uma documentacao
composta por modelos construidos de acordo com os requisitos identificados. Ja a
engenharia reversa possui um processo ao contrario, onde a partir do cédigo fonte,
sao recuperadas informacdes para documentar um software através da construcéo de

modelos arquiteturais ou requisitos de software.

De acordo com Tripathy e Naik (2014), tanto o processo de engenharia
tradicional de software e o processo de engenharia reversa sdo separadas em trés

etapas principais:

e Requisitos, onde é definido o que o software deve fazer;
e Modelos, onde é definida a estrutura do software;
e Implementacdo, onde é construido o cédigo fonte, e a realizagdo dos

testes;

2.1.2 Técnicas
Segundo Tripathy e Naik (2014), as técnicas que sao utilizadas para a engenharia

reversa sao:

e Andlise Léxica: E o processo de analisar uma ou mais instru¢ées de um cédigo

fonte, para identificar operacdes, numeros, simbolos e palavras reservadas. A

22

andlise léxica é realizada por um compilador, transformando os caracteres
inseridos em tokens que sejam referentes a gramatica que o compilador
entenda e possa realizar a analise sintatica. Esta técnica auxilia a primeira
etapa do processo de engenharia reversa, identificando a estrutura de uma
instrucao;

Analise Sintatica: E a forma mais complexa de automatizar a analise de um
programa é analisar sua sintaxe. Compiladores analisam se os tokens criados
a partir da analise Iéxica estdo de acordo com a gramatica pré-definida no
compilador. Esta técnica permite identificar declaracfes e expressfes de uma
instrucdo, Esta técnica auxilia a primeira etapa do processo de engenharia
reversa, identificando a gramatica de uma instrucao;

Analise de Fluxo de Controle: E a técnica utilizada para analisar
estaticamente qual a sequéncia de instru¢cées de um codigo fonte. Esta técnica
auxilia a segunda etapa do processo de engenharia reversa, identificando o
fluxo de instrugdes que formam uma funcéo;

Analise de Fluxo de Dados: E utilizado para analisar como os dados s&o
transformados entre as entradas e saidas de instru¢des e funcdes. Segundo
Pereira, Martinez e Favre (2011), Autores adaptaram a técnica de fluxo de
dados para gerar diagramas UML como diagramas de classe, objeto, iteracéo,
estado e pacotes. Esta técnica auxilia a primeira segunda e terceira etapa do
processo de engenharia reversa, identificando as entradas e saidas entre
instrucdes e funcoes;

Divisdo do programa: E a técnica para dividir linhas de instru¢do de um codigo
fonte para melhorar visualmente sua estrutura e compreenséo, essa analise
separa uma funcdo em partes contendo uma série de instrucdes, caso seja
necessario modificar apenas parte da fungéo. Esta técnica auxilia a primeira e
quinta etapa do processo de engenharia reversa, separando as instrugbes em
funcdes e funcbes em aplicacoes;

Visualizacdo: Essa técnica é utilizada para representar graficamente o
software, sendo utilizada principalmente para apresentar componentes e como
estes componentes estao ligados. Esta técnica auxilia a quinta e sexta etapa
do processo de engenharia reversa, identificando as aplicacbes e o0s

componentes do software;

23

e Métricas de software: Essa técnica € utilizada controlar o processo de
engenharia de software de um coédigo fonte, medindo elementos como
complexidade ciclomatica e pontos por funcdo. Em linguagens orientadas a
objetos, outras métricas foram criadas, sendo elas:

o Numeros de métodos por classe.

o Responsabilidade da classe

o Falta coeséo nos métodos de uma classe

o Acoplamento entre objetos de uma classe

o Profundidade da arvore de heranga

o Numero de classes filho de uma classe;
Esta técnica auxilia a quinta e sexta etapa do processo de engenharia de
software, servindo como medidas para avaliar as aplicacdes e a arquitetura de

um software.

2.2 Arquitetura de Software

2.2.1 Definicdo e Objetivos

Segundo a ISO/IEC 42010 (2011), a arquitetura de um software consiste nos
conceitos fundamentais ou propriedades de um sistema em seu ambiente incorporado
em seus elementos, relacdes e nos principios da sua concepc¢ao e evolugédo. Segundo
a norma, apesar de nao existir uma simples definicdo sobre quais sdo 0s conceitos

fundamentais de um software, a norma afirma que eles podem ser:

¢ Elementos ou componentes de um software;

e Como os elementos do sistema s&o organizados e relacionados;

e Principios da organizacéo ou construcdo do software;

e Principios que governam a evolugéo do software ao longo do seu ciclo

de vida.

Para Rozansky e Woods (2005), todo software possui uma arquitetura,
entretanto isso ndo significa que toda arquitetura de um software estd documentada,

de facil compreensao ou de acordo com as necessidades dos stakeholders.

24

2.2.2 Elementos Arquiteturais

Segundo Rozansky e Woods (2005), Elementos arquiteturais sdo itens
fundamentais que devem ser considerados na construgdo de um sistema, tais como
bibliotecas, subsistemas ou até mesmo outros sistemas, sendo que, eles precisam ter
uma série de responsabilidades, interfaces, servicos e limites claramente definidas.

Um elemento arquitetural deve possuir os seguintes atributos chaves:

e Uma série de responsabilidades claramente definidas

e Um limite claramente definido

e Uma série de interfaces claramente definidas que caracterizem os
servicos que um elemento arquitetural fornece a outros elementos

arquiteturais

2.3 Descricao Arquitetural

2.3.1 Definicdo e aplicacdes

Uma descricdo arquitetural € o produto de trabalho que expressa a arquitetura
de um software (ISO/IEC 42010: 2011). De acordo com a norma, a descricdo
arquitetural é um artefato, que contribui no entendimento do propésito de um sistema
e as principais propriedades referentes ao seu comportamento, composicdo e
evolucdo, pois sao fatores que afetam questdes como a viabilidade, utilidade e

manutenc¢ao do sistema.

Para Rozanky e Woods (2005), a arquitetura de um software pode ser
complexa, e a descricdo arquitetural é usada para descrever a arquitetura de uma
forma que seja possivel entender esta complexidade. Sendo assim, qualquer artefato
que é utilizado para auxiliar a apresentacdo da arquitetura aos stakeholders, faz parte

de uma descri¢ao arquitetural.

Segundo a ISO/IEC 42010 (2011) as descri¢cdes arquiteturais séo usadas pelos
stakeholders para criar, utilizar e gerenciar a construcao, funcionamento e evolucéo

de softwares para melhorar a comunicacao e cooperacéo, habilitando os envolvidos

25

no projeto a trabalhar de forma integrada e visualmente util. As descricbes néo estao
limitadas entre os exemplos de utilizacdo informados pela norma. Alguns dos

exemplos fornecidos de utilizacdo de descricfes arquiteturais sao:

e Base do modelo do Sistema e atividades de desenvolvimento;

e Base para analisar e validar alternativas de implementacéo da arquitetura;

e Documentacao para desenvolvimento e manutencéao;

e Documentar aspectos essenciais de um sistema como uso e ambiente
envolvido;

e Principios, premissas e restricdes para guiar futuras mudancas;

e Pontos de flexibilidade e limitacdes do sistema com relagcdo a futuras
mudancgas;

e DecisOes arquiteturais, suas justificativas e implicagdes;

e Comunicacdo entre partes envolvidas sobre o desenvolvimento, producéo,
implantacdo, operacdo e manutencao de um sistema,;

e Comunicacao entre clientes, adquirentes, apoiadores e desenvolvedores como
parte do contrato de negociacoes;

e Base para reviséo, analise e validacdo de um sistema atraves de seu ciclo de
vida;

¢ Planejar para transicdo de uma arquitetura legada para uma nova arquitetura;

e Apoio para atividades de planejamento, agendamento e cobrancga;

A figura 2 apresenta o modelo conceitual da descricdo arquitetural.

26

Figura 2 - Modelo Conceitual da descri¢céo arquitetural

r‘ Exibe
Sistema >| Arquitetural
1 1 =
1

1% 2}
Identifica Sai
Tem interesse en Expressa L Ar(:-gi%:;t:ﬁral
1% 1 1 /
1. Identifica 1 = — 0.*
o escricao 22 s
|Stakeholder [< 1 Arquitetural <>—1Corresponden0|a

0

i e Identifica
Tem

l..'

Preocupacao 1 Regra de

Correspondéncia

Endereca

Mapeia
lu-, < l“.
Governa
Ponto de vista Visdao
1 i
1. 1.
Governa

. Modelo

Tipo de Modelo 1 1 + |Arquitetural

Fonte: ISO/IEC 42010

De acordo com a figura, uma arquitetura de software é diferente de uma
descricdo arquitetural, sendo uma descricdo arquitetural um produto de trabalho,
composto por conceitos e propriedades, que expressam a arquitetura de um software
exibida pelo sistema. Cada um dos elementos do modelo conceitual sdo elementos
gue quando analisados para entender a arquitetura de um sistema, sao Uteis para a

construcédo de uma descri¢édo arquitetural.

2.3.2 Visbes
Segundo a norma ISO/IEC 42010 (2011), uma visdo é uma maneira de se

representar um sistema através de modelos que atendam determinadas

preocupacdes dos stakeholders. Para Rozansky e Woods (2005), ndo € possivel

27

capturar as caracteristicas funcionais e propriedades de qualidade de um sistema
complexo com apenas um unico modelo que seja entendido e util por todos os
stakeholders. Para isso, uma arquitetura é descrita em visbes separadas, porém
relacionadas entre si, sendo que cada visao analisa aspectos e problemas diferentes

de uma arquitetura.

Pontos de Vista

De acordo com a ISO/IEC 42010 (2011), um ponto de vista sdo conceitos e
padrées que um modelo arquitetural deve seguir para representar adequadamente
uma visdo. Uma visdo endereca uma ou mais preocupacgdes dos stakeholders de
forma que estejam de acordo com um ponto de vista. Um ponto de vista deve

especificar os seguintes itens:

e Um ou mais interesses estruturados pelo ponto de vista;

e stakeholders genéricos para os interesses estruturados pelo ponto de vista,

e Um ou mais tipos de modelos usados neste ponto de vista;

e Para cada modelo identificado, as linguagens, notacdes, convencoes,
técnicas de modelagem, métodos analiticos e/ou outras operacdes para ser
usadas em um modelo deste tipo;

e Referencias para suas fontes;

Para Vallecilo et al. (2011), os pontos de vista tém o propdésito de quebrar a
complexidade de especificar um sistema em pecas separadas, utilizando técnicas
diferentes para especificar modelos que sejam familiares para os stakeholders

especificos de cada visao e paralelizar as atividades entre equipes diferentes.

2.3.3 Modelos Arquiteturais

Um modelo arquitetural usa convencgdes de modelagem apropriadas para as

preocupacdes enderecadas a uma visdo. Essas convencgdes sdo especificadas por

28

um tipo de modelo que governa aqguele modelo. Dentro de uma descrigéo arquitetural,
um modelo arquitetural pode ser parte de uma ou mais visdes. (ISO/IEC 42010, 2011).

Para Rozansky e Woods (2005), Modelos arquiteturais sdo representacoes de
um ou mais aspectos de um software, que sejam enderecados a uma visao. Os

autores citam algumas razdes para se construir modelos, das quais sao:

e Trazer precisao e foco nos elementos importantes para uma situacao

e Agir como mediagcdo para comunicacéo, ajudando a explicar a arquitetura a
outras pessoas envolvidas.

e Ajudam a analisar situacdes permitindo isolar elementos chaves e entender
seus inter-relacionamentos.

e Auxiliam na organizacado de processos, equipes e entregaveis.

2.3.4 Correspondéncia

De acordo com a norma 42010 (2011), uma correspondéncia expressa um
relacionamento entre elementos de uma descricdo arquitetural, e sdo utilizadas para
representar relacfes de uma descricdo arquitetural ou entre descri¢cdes arquiteturais.
Modelos, visdes, pontos de vista possuem correspondéncias entre si. Geralmente

uma correspondéncia é governada por uma regra de correspondéncia.

2.3.5 Regra de Correspondéncia

Segundo a norma ISO/IEC 42010 (2011), uma regra de correspondéncia forga
um relacionamento dentro de uma descricdo arquitetural ou entre descricdes
arquiteturais. As correspondéncias entre modelos e entre visdes de uma descrigdo
arquitetural devem estar de acordo com as regras especificadas por uma linguagem

ou framework arquitetural.

2.3.6 Lagica arquitetural
Segundo a norma ISO/IEC 42010 (2011), a logica arquitetural expressa as
justificativas, explicacdes ou motivos para uma deciséo arquitetural ter sido escolhida

ao invés das alternativas propostas.

29

2.3.7 Atributos de qualidade

De acordo com Rozansky e Woods (2005), uma descrigdo arquitetural eficiente
deve balancear seis propriedades: Exatiddo, Suficiéncia, Consciéncia, Clareza,
atualidade e precisao. A figura 4 apresenta os atributos de qualidade de uma descri¢ao

arquitetural.

Figura 3 - Qualidade de uma descricédo arquitetural eficiente

Exatiddo

‘ Descri¢ao ‘

Arquitetural

Atualidade @

Fonte: Adaptado de Rozansky e Woods, 2005.

Conforme a figura mostra, para uma descrigao arquitetural ser eficiente, ela precisa

balancear as seguintes propriedades: (Rozansky e Woods, 2005)

e Exatid&o: E considerado o mais importante atributo de qualidade da descric&o
arquitetural, onde as informacgdes precisam estar exatas em representar como
a arquitetura ira atender as necessidades e interesses dos stakeholders;

e Suficiéncia: A descrigdo arquitetural precisa estar detalhada o suficiente para
responder questdes importantes sobre a arquitetura do software. Se a
descricdo arquitetural ndo tiver informacdes suficientes, serd um obstaculo
realizar decisdes arquiteturais antes que o sistema esteja no ciclo de vida do

desenvolvimento;

2.4

241

30

Consciéncia: A descricdo arquitetural precisa ser mais objetiva e simples em
expressar os elementos importantes da arquitetura. Entretanto, decidir quais
elementos sdo importantes e o detalhe deles dependem de diversos fatores
como:

o Capacidade e experiéncia dos stakeholders;

o Extensdo caso a equipe nao esteja familiarizado com a tecnologia

o Dificuldade do problema que esta sendo analisado

o Quanto tempo e recurso vocé tem disponivel para criar a descricdo

arquitetural.

Clareza: A descricdo arquitetural precisa ser entendida por todas as classes
de stakeholders. O conceito de ponto de vista € (til para auxiliar neste ponto.
Atualidade: A descricdo arquitetural precisar estar de acordo com as
mudancas feitas na arquitetura, para isso, a descrigdo arquitetural tem que ter
um tamanho aceitavel para que as mudancas ndo sejam complexas.
Precisdo: uma descricdo arquitetural precisa descrever a arquitetura
precisamente para que o sistema seja modelado e implementado, e se néo for

feito direito, a precisdo pode se tornar o contrario de consciéncia

UML40ODP

Linguagens de descri¢do arquitetural

Linguagem de descricdo arquitetural, segundo a ISO/IEC 42010 (2011), € um

mecanismo criado atraves da construcdo de conceitos utilizados em uma descricao

arquitetural e tem por objetivo expressar as convengfes e praticas comuns para

construir descrigcbes arquiteturais para diferentes comunidades e dominios de

aplicacdo. Segundo a norma, uma linguagem de descricdo arquitetural precisa

especificar:

e A identificacdo de um ou mais interesses expressados pela linguagem
de descri¢ao arquitetural;
e A identificacdo de um ou mais stakeholders com seus interesses

expressados;

31

e Os tipos de modelos implementados que mapeie os interesses;
e Os pontos de vista que serao utilizados;

e Regras de correspondéncias;

2.4.2 Contexto

UML4ODP ou Uso da UML para sistemas especificados em ODP €, segundo a
ISO/IEC 19703 (2008), uma linguagem de descricdo arquitetural que foi criada para
atender o crescimento da ado¢édo do Modelo de referéncia de processamento aberto
distribuido (RM-ODP), utilizando a Linguagem de Modelagem Unificada (UML) para

expressar a especificacao de sistemas que utilizam o modelo ODP.

Para Rozansky e Woods (2005), provavelmente a UML é a forma mais
prevalente para criar uma descricdo arquitetural. A UML tem algumas vantagens,
incluindo a sofisticagdo de algumas de suas notagcbes e sua flexibilidade e
extensibilidade, e como a UML é muito utilizada, muitos stakeholders n&o terdo
problemas em entende-la, ja que notacdes mais complexas e menos difundidas, serao

de dificil entendimento e acompanhamento pelos stakeholders de negdcio.

De acordo com Vallecillo et al (2011), o problema da UML por si s6 é que ela
nao suporta a separacdo de preocupacdes e interesses que existem nos pontos de
vista de uma descricdo arquitetural, entretanto, equipes de desenvolvimento
adaptavam a UML para torna-lo mais compativel com o ODP. Vendo isso, foi criado
este padrao, que providencia um perfil que mapeia os conceitos do ODP para a

notagédo UML.

2.4.3 Pontos de Vista

Os modelos criados a partir da utilizacdo do UML40ODP séo baseados nos
conceitos do RM-ODP. O RM-ODP utiliza cinco pontos de vista para especificar a

arquitetura de um sistema, como mostra a Figura 4:

32

Figura 4 - Pontos de Vista do RM-ODP

Empresa:

Aspectos do negdcio
O propésito, escopo e politicas para a
organizac&o que vao pertencer ao sistema.

Para o que? Porque? Como? Quando?

Informacao: Computacional:

Aspectos da Informacéo do ﬁ Sistema

Aspectos do modelo da aplicagéo
Decomposigéao funcional do sistema

sistema
Informacé&o controlada pelo em objetos adequados para

sistema e as restricdes no distribuicao.
uso e interpretacéo desta Como cada pedago funciona?
informag&o.

E sobre o que?

Tecnologia: Engenharia:
Implementacéo Tipos de solugdo e distribuigcdo
Hardware e software e distribuicdo Infraestrutura necessaria para
atual. apoiar a distribui¢&o.
Com o que? Como os bits trabalham iuntos?

Fonte: ISO/IEC 19793:2008

Conforme mostra a Figura 4, cada ponto de vista aborda um grupo de interesses
do sistema e seu objetivo € auxiliar a responder as perguntas correspondentes a sua
visado do sistema, segundo o modelo RM-ODP, um sistema € especificado seguindo 5
pontos de vista, cada um com sua respectiva linguagem de ponto de vista que é usado
para especificar o sistema. (ISO/IEC 19793, 2008).

e Ponto de vista empresa: Este ponto de vista foca no escopo do sistema,
propésito do sistema que é definido pelo comportamento especificado do e
politicas capturam futuras restricbes do comportamento entre o sistema e seu
ambiente, ou entre as decisbes de negocio dos donos do sistema. Sua
linguagem providencia 0s conceitos necessarios para modelar um sistema

ODP no contexto do negécio da organizacdo em que ele opera. Sua

33

7

especificacdo, € modelar objetos empresa, as comunidades do ambiente e
papéis envolvidos.
Para Vallecilo et al (2011), os stakeholders que precisam estar satisfeitos com
a especificacdo da visdo empresa sao os donos do processo de negoécio que
sera apoiado e 0s gerentes responsaveis pelas politicas operacionais;
Ponto de vista informacé&o: Este ponto de vista foca nos tipos de informacao
controlados e usados pelo sistema. Sua linguagem apresenta 0os componentes
individuais e a comunicacdo entre eles através de um entendimento comum
das informac6es que séo trafegadas. Sua especificacdo abrange uma série de
esquemas:
o O esquema invariante, que expressa a estrutura, tipos e o0s
relacionamentos entre os objetos informacéao,
o O esquema estatico, que expressa o estado dos objetos informacéo em
um determinado tempo;
o O esquema dindmico que especifica como a informacdo pode evoluir
durante a operacdo do sistema e quais sao os estados que um objeto
informacé&o pode ter.

Segundo Vallecillo et al (2011), a visédo informacéo foca em quais informacéao
gue o software irA manipular e ndo com as interfaces realizardo essa
manipulagdo, nem as tecnologias que definem como os dados seréo
guardados. Portanto, o objetivo deste ponto de vista é ter um dicionario de
dados para todas as partes. Os stakeholder que tem mais interesses por esta

visdo séo os que trabalham com banco de dados;

Ponto de vista computacédo: Este ponto de vista foca em expressar a
composicdo funcional do sistema através de uma série de servigos que se
interagem por interfaces, e qual o comportamento destes servicos. Sua
especificacdo modela objetos computacionais que sdo funcgdes individuais
realizadas pelo sistema e a interacéo entre estes objetos através de interfaces.
Para Vallecillo et al. (2011), o objetivo da visdo computacdo € expressar um
modelo com as funcionalidades basicas do software, os servi¢os oferecidos e
como estes servigcos sao construidos e estdo conectados. A visdo computacao
permite a reutilizacdo da arquitetura, separando as funcionalidades de

plataformas ou tecnologias;

2.5

34

Ponto de vista da engenharia: Este ponto de vista foca na infraestrutura
necessaria para apoiar o sistema, concentrado em como 0s objetos se
interagem. Sua especificacdo € definir os mecanismos necessarios para
suportar as funcdes do sistema fazendo uso das tecnologias especificadas na
visao tecnologia.

Segundo Vallecillo et al. (2011), o ponto de vista engenharia é enderecado aos
projetistas interessados na infraestrutura do sistema, pois este ponto de vista
foca nos mecanismos para distribuir os objetos do sistema;

Ponto de vista tecnologia: Este ponto de vista foca na escolha dos
fornecedores e tecnologias para apoiar a infraestrutura do software expressada
na visdo engenharia. Sua especificagdo modela a configuragdo de
componentes de hardware e software para implementacéo, restringindo custos

e disponibilidade dos objetos de tecnologia;

Relacdo entre a engenharia reversa e a arquitetura de software.

A literatura h4 muitos anos, contribui com modelos para construcdo de

arquiteturas de software, a partir da transformacdo e migracdo de arquitetura de

software, comecando por softwares legados. Um dos modelos criado com este

propésito modelos € o modelo horseshoe apresentado na figura 5.

35

Figura 5 - Modelo Horseshoe

Transformacao da arquitetura Arquitetura desejada

Arquitetura base

Nivel arquitetural /\ Nivel arquitetural

Nivel de funcéo Nivel de funcéo

Estrutura do Estrutura do
codigo cadigo

Cédigo Legado Novo cadigo

In)aunbJie ep ogdejuswa|dwy|

Recuperacao da arquitetura >

<e

Fonte: Adaptado de Tripathy e Naik, 2014

Segundo (Tripathy e Naik, 2014), O modelo Horseshoe descreve um processo de
trés etapas para realizar a reengenharia de uma arquitetura de um software, sendo as

trés etapas:

e Recuperacao de arquitetura: Representada pelo lado esquerdo da figura, esta
etapa consiste em utilizar técnicas de engenharia reversa e o principio de
abstracdo para representar a arquitetura do software a partir do cédigo fonte e
avaliar se a arquitetura esta de acordo com atributos de qualidade do projeto.
Para recuperar a arquitetura do software, € necessario expressar o codigo fonte
nos seguintes modelos:

o Estrutura de codigo: Representa a estrutura das instrucoes, estilos de
codificagéo e fluxo da aplicagéo.

o Representacdo de funcdo: Representa o codigo fonte, em nivel de
funcdes e os dados manipulados por estas fungbes, a UML pode ser

utilizada para esta representacao

36

o Representacao Arquitetural: Tem o objetivo de representar padroes de
projetos, estilos arquiteturais e conceitos envolvidos no codigo fonte, sua
representacdo pode ser feita através de modelos arquiteturais.

e Transformagdo de arquitetura: Representada pela seta do topo da figura,
consiste em transformar a arquitetura atual na arquitetura desejada usando o
principio de alteracao.

e Implementacdo da nova arquitetura: Representada pelo lado direito da figura,
esta etapa consiste em realizar um desenvolvimento baseado em arquitetura,

construindo o novo cédigo.

A primeira etapa do modelo horseshoe apresenta uma série de representacdes
gue sSa80 necessarias para recuperar a arquitetura de um sistema, estas
representacfes sao necessarias pois nao € possivel compreender a arquitetura de um
sistema diretamente pelo codigo fonte. Para construir modelos que atendam cada
representacdo, sdo necessarias diferentes técnicas para construir estes modelos,

sendo estas técnicas de engenharia reversa.

37

3 PROCESSO DE DESCRICAO ARQUITETURAL

Esta secdo descreve o processo propostas neste trabalho, com suas atividades,

tarefas e como foi construido. O processo € especificado e modelado utilizando a

notacdo BPMN e baseado na primeira etapa do modelo Horseshoe, que consiste em

expressar a arquitetura de um software, construindo modelos arquiteturais a partir do

codigo fonte. Neste processo, os modelos arquiteturais construidos séo do ponto de

vista da computacéo do RM-ODP.

A construcao deste processo, foi realizada da seguinte forma:

1. Construir um processo genérico: Primeiro, foi realizada a construgdo de um

processo geneérico para construir uma descricdo arquitetural a partir do codigo

fonte. Esse processo genérico define os objetivos das atividades e artefatos do

processo. Esse processo genérico definiu-se com base no modelo Horseshoe,

o produto de trabalho desta etapa é explicado na figura 6

Definir os requisitos: Os requisitos deste trabalho foram identificados a partir
de quais modelos eram necessarios para realizar as abstracdes do modelo
Horseshoe adaptado na Figura 6;

Definir as técnicas e ferramentas: Identificar técnicas que utilizem e resultem
nos modelos identificados na primeira etapa: Nesta etapa, foram
pesquisadas quais técnicas poderiam ser utilizadas para abstrair um modelo
para outro modelo, seguindo a ordem do modelo Horseshoe adaptado.
Nesta etapa foram definidas a ordem das técnicas que seriam utilizadas
para aplicar o processo;

Definir os artefatos: Foram definidas as caracteristicas dos artefatos
resultantes deste processo: Nesta etapa foram definidos quais as
propriedades do artefato gerado por este processo, no caso a descricao

arquitetural;

N\

38

Figura 6 - Adaptacdo do modelo Horseshoe para o modelo proposto

Descricdo arquitetural

(Visdo Computacéo)

Modelos Arquiteturais
(Visdo Computacéo)

Modelos de
funcao (UML)

Recuperacao da arquitetura

Como

tipos:

-
st S 4

Cddigo Fonte e Script de criacao
do banco de dados

Fonte: Elaborado pelo autor

a Figura 6 mostra, o processo tem o objetivo de gerar modelos dos seguintes

Modelos de operacdo: Sdo modelos que ndo possuem um nome especifico,
pois, cada técnica utiliza diferentes modelos que sao necessarios porque todas
as técnicas de engenharia reversa utilizadas neste trabalho ndo constroem
modelos UML direto do cédigo fonte, sendo modelos intermediarios de cada
técnica. Estes modelos tem o objetivo de abstrair codigo fonte para a analise
ser feita independente de tecnologia, linguagem ou framework;

Modelos do nivel de fungdo (UML): O resultado final da primeira etapa,
geralmente as técnicas de engenharia reversa tem como resultado final
diagramas UML, ele ja fornece informacdes suficientes para construir modelos
arquiteturais na segunda etapa;

Modelos arquiteturais (Visdo computacéo): Estes modelos serdo construidos
na segunda etapa do processo seguindo a norma ISO/IEC 19793 UML4ODP
(2008), para expressar o sistema adequadamente com 0s conceitos de

arquitetura de software.

39

7

2. Detalhar as atividades do processo genérico: O resultado € uma descricdo
explicita das tarefas de cada atividade e de cada artefato. Esse detalhamento
€ um tipo de instanciacdo de processo Borsoi (2008), ou seja, 0 processo é
especializado para um modelo aplicavel dentro dos requisitos de um contexto
especifico. Para detalhar as atividades utilizou-se o método de instanciacédo de
processo Dias (2010) e foram utilizadas as técnicas de engenharia reversa de
Ramanathan e Hodges (1996), Pereira, Martinez e Favre (2011) e Tonella
(2005) como contexto sendo apresentado na Figura 7 e detalhado no item 3.1

e no item 3.2

Figura 7 - Processo de construcdo de uma descri¢céo arquitetural de sistemas através da
engenharia reversa

Bancode:
¢ "t dados

Codigo
Fonte

Desenvolvedor

o

2

=

e

E 1.Engenhgria reversa

% {recupetacio de

z modelos)

L

wi

L

a]

o

T Frraraa e

o

2

3

E R R

“ole : D
L4 .
= : Descrics
= : escrigio
3 ¥ .
g | Arquitetural

2. Construir descri¢io
arguitetural

Fonte: Elaborado pelo autor

40

De acordo com a Figura 6, o processo deste trabalho é dividido em duas etapas
principais: Engenharia Reversa para recuperacédo de Modelos, que mapeia o modelo
Horseshoe partindo de analisar o cédigo fonte até a representacao do nivel de funcéo.
Nesta etapa, um desenvolvedor que possui um conhecimento detalhado do cadigo
fonte tem o papel de utilizar técnicas de engenharia reversa para construir os modelos

UML de diagrama de classes, diagramas de caso de uso e diagramas de sequéncia.

A segunda etapa € a construcdo de uma descricdo arquitetural da visao
computacédo extraindo informacgdes geradas nos modelos UML para a construcéo de
modelos arquiteturais. Nesta etapa, um arquiteto tem o papel de usar as informagdes
dos modelos construidos para construir a descricdo arquitetural criando modelos da
visdo computacdo. Esta etapa tem como objetivo selecionar quais informacfes de

cada modelo ser@o necessérias para construir cada modelo arquitetural.

3.1 Etapa l: Engenhariareversa pararecuperacdo de Modelos

Esta secdo apresenta o0 objetivo, a base para criacdo e quais os artefatos
necessarios para aplicacdo da primeira etapa do processo. O objetivo desta etapa é
possibilitar a identificacdo das entidades de dominio e compreensdo das
funcionalidades do software e pela equipe de desenvolvimento, e possibilita o
arquiteto analisar as informac@es contidas nos resultados desta etapa para expressar
a arquitetura. A base para esta etapa é utilizar as seguintes técnicas de engenharia

reversa.

1. Engenharia reversa de esquemas relacionais para esquemas orientados a
objetos (Ramanathan e Hodges,1996);

2. Engenharia reversa para recuperacdo de diagramas de caso de uso
(Pereira, Martinez e Favre, 2011);

3. Engenharia reversa para recuperacao de diagramas de sequéncia (Tonella,
2005);

Para a aplicacdo de todas as técnicas, sdo necessarios o codigo fonte e o script
de criacdo do banco de dados do software. O objetivo das técnicas utilizadas nesta
etapa é construir modelos no nivel de funcdo do modelo horseshoe. Apesar desta

etapa utilizar estas técnicas, esta etapa nao € limitada em utilizar apenas estas

41

técnicas, desde que sejam usadas técnicas que resultem em artefatos no nivel de

funcdo do modelo horseshoe que expressem as funcionalidades do sistema e as

entidades do dominio.

Figura 8 - Etapas do processo de engenharia reversa

;S

5

E Script do Diagrama
5 banco de de classes
z dados

2

[-H]

a

1. Construir
diagrama de
classes

Diagrama Diagrama
de caso de o de
uso o sequéncia

2. Construir 3. Construir
diagrama de caso diagrama de
de usa sequéncia

Fonte: Elaborado pelo autor

Como a Figura 8 mostra, todas estas técnicas sao atividades do processo, e

tém como resultado final a construgcédo de modelos UML, dentre estes modelos estéo:

Um diagrama de classe, um diagrama de caso de uso e um diagrama de sequéncia.

Estes modelos foram escolhidos porque o uso dos diagramas de classe, caso de uso

e sequencia sdo os diagramas mais utilizados para compreender o comportamento

de um software. Esta etapa mostra quais informacdes sdo necessarias para construir

uma descri¢do arquitetural e como elas devem ser organizadas.

3.1.1 Engenharia reversa de esquemas relacionais para esquemas orientado a

objetos

3.1.1.1. Definicdo da técnica

42

A técnica apresentada por Ramanathan e Hodges (1996), utiliza a engenharia

reversa em esquemas de banco de dados relacionais, para construir um diagrama de

classes. Como premissa para utilizar a técnica, o banco de dados a ser analisado deve

estar na terceira forma normal. A técnica consiste em trés etapas principais:

Identificacdo de classes de objetos: Esta etapa cria classes de objetos que

correspondam as tabelas do modelo relacional. Uma tabela do modelo

relacional que é categorizada como classe de objetos precisa estar em uma

das seguintes condicoes:

o

o

Uma tabela que possua apenas um atributo como chave primaria
Uma tabela que possua mais de um atributo como chave priméria mas

pelo menos um destes atributos ndo seja uma chave estrangeira

Identificacdo de Relacionamentos: Para cada tabela do modelo relacional que

possua chaves estrangeiras, existe um relacionamento entre duas tabelas. E

necessario que estes relacionamentos sejam expressados no diagrama de

classes. O objetivo desta etapa € identificar os relacionamentos divididos entre:

o

o

Associacao: todas as tabelas do modelo relacional cuja chave primaria
consiste inteiramente por chaves estrangeiras, sao tabelas associativas.
Portanto, O diagrama de classes deve expressar um relacionamento
entre todas as classes de objetos que correspondam as tabelas que
estdo associadas com uma tabela associativa.

Heranca: As tabelas do modelo relacional que possuam a mesma chave
primaria sdo representadas no diagrama de classes através de um
relacionamento de heranca. A tabela no qual a chave primaria pertence
é representada no modelo conceitual como classe pai, e as tabelas que
utilizam a chave primaria séo representadas no modelo conceitual como
classes filho.

Agregacdo: Toda a tabela que a chave primaria seja composta,
possuindo chaves estrangeiras e que nao sejam associativas, 0s
relacionamentos entre estas tabelas séo representados no diagrama de
classes por uma agregacdo entre a classe que utiliza a chave

estrangeira, e a classe que possui a chave estrangeira como atributo.

Expressar Cardinalidades: No modelo relacional, existem as cardinalidades

entre relacionamentos de uma tabela, estas cardinalidades devem ser

43

expressadas igualmente como multiplicidades entre as classes de objetos no

diagrama de classes.

As informacdes desta técnica permitem construir o diagrama de tipos de dados na
etapa de construir os modelos da visdo computacao no item 3.2.1 pois o diagrama de
classes resultante desta técnica representa as entidades de dominio do software.

3.1.1.2. Aplicagdo da técnica

O objetivo desta técnica dentro do processo deste trabalho, € identificar as

classes de entidade que o software possui e os relacionamentos destas classes.

Figura 9 - Processo de recuperacédo do esquema orientado a objetos

Lista de Lista de : Lista de f Lista de Lista de

descrigao : Classes de : Assouagoes Herangas : Agregagdes
das tabelas : Objetos
1- Constilielie 2 3. ldentificar 4. Identificar 5. Identificar
eaezlig Gzl Assosiagdes Herangas Agregacdes
esquema relacional Objetos s < gregag

Desenvolvedor

A

Script do
Banco de Lista de : Diagrama
Dados de Classes

.......... % JI >

Cardinalidades

7. Construir
Diagrama de
Classes

6. Identificar
Cardinalidades

Fonte: Elaborado pelo autor

Como a figura mostra, o desenvolvedor utiliza a técnica em uma série de
atividades e tarefas que correspondem as etapas da técnica de engenharia reversa.

Cada atividade é detalhada nas tabelas a seguir:

44

Tabela 1 - Descrigéo da atividade "Construir a lista de tabelas do esquema relacional”

Atividade Al. Construir a Lista de Tabelas do Esquema Relacional
Tarefas T1.ldentificar Tabelas
T2.ldentificar atributos de cada tabela identificada
T3.ldentificar relacbes de chaves primarias e chave
estrangeira de cada tabela.
Artefato de | Script do Banco de dados (Arquivo DDL)
entrada

Artefato de saida

Lista de descricdo das tabelas

Fonte: Elaborado pelo autor

Tabela 2 - Descri¢céo da atividade "Identificar Classes de Objetos”

Atividade A2. Identificar Classes de Objetos

Tarefas T1.ldentificar as tabelas do esquema relacional que esteja
nas condicdes de ser uma classe de objetos

T2.Para cada tabela identificada na tarefa anterior, modelar

uma classe com o0 mesmo nome da tabela e os mesmos
atributos.

Artefato Lista de descricédo das tabelas

de entrada

Artefato de saida

Lista de tabelas de Classes de Objetos

Fonte: Elaborado pelo autor

Tabela 3 - Descricao da atividade "Identificar Associa¢c6es"

Atividade

A3. Identificar Associacdes

Tarefas

T1.Criar uma Lista com o nome de “Lista de Associagoes”
T2.ldentifique todas as tabelas associativas

T3.Para cada tabela identificada, insira um registro na lista de

herancas na seguinte estrutura.

45

Artefato
de entrada

» Lista de descricdo das tabelas
+ Tabela de Classes de Objetos

Artefato de saida

» Lista de Associacgoes

Fonte: Elaborado pelo autor

Tabela 4 - Descricao da atividade "Identificar Herancas"

Atividade A4. Identificar Herancas
Tarefas T1.Criar uma Lista com o nome de “Lista de Herangas”
T2.Identificar todas as tabelas que estejam categorizadas por
uma relacdo de heranca (tabelas que possuem a mesma
chave priméaria)
T3.Para cada tabela identificada, insira um registro na lista de
herancas
Artefato + Esquema relacional
de entrada + Tabela de Classes de Objetos

Artefato de saida

« Lista de Herancas

Fonte: Elaborado pelo autor

Tabela 5 - Descricdo da atividade "Identificar Agregacdes"

Atividade A5. Identificar Agregacdes
Tarefas T1.Criar uma Lista com o0 nome de “Lista de Agregacdes”
T2.ldentifique todas as tabelas que possuam relacionamento
de agregacao (tabelas que a chave primaria tenha mais de
um atributo e pelo menos um deles ndo é uma chave
estrangeira)
T3.Para cada tabela identificada, insira um registro na lista de
agregacodes
Artefato + Esquema relacional
de entrada + Tabela de Classes de Objetos

Artefato de saida

» Lista de Agregacoes

46

Fonte: Elaborado pelo autor

Tabela 6 - Descrigao da atividade “ldentificar Cardinalidades”

Atividade A6. ldentificar Cardinalidades
Tarefas T1.Criar uma Lista com o nome de “Lista de Cardinalidades”
T2.Para cada relacionamento entre 2 classes, identificar o
tipo de cardinalidade
T3.Para cada cardinalidade identificadas, inserir um registro
de multiplicidade correspondente a cardinalidade
Artefato + Esquema relacional
de entrada * Tabela de Classes de Objetos

* Tabela de Associacoes
* Tabela de Herancas
+ Tabela de Agregacoes

Artefato de saida

* Lista de Cardinalidades

Fonte: Elaborado pelo autor

Tabela 7 - Descricédo da atividade "Construir o diagrama de classes”

Atividade

A7. Construir o diagrama de classes

Tarefas

T1.Crie um diagrama de classes com as seguintes
consideracoes:

T2.Para cada classe de objetos, construa uma classe
correspondente com 0 mesmo nome e 0S Mesmo
atributos.

T3.Para cada relacionamento na tabela de associagdes,
heranca e agregacdo, construa um no diagrama um
relacionamento entre as classes

T4.Para cada cardinalidade entre as relacdes de tabelas,

defina a multiplicidade entre as classes de forma idéntica.

47

Artefato + Esquema relacional
de entrada + Tabela de Classes de Objetos
+ Tabela de Associacoes
» Tabela de Herancas
+ Tabela de Agregacoes
+ Tabela de Cardinalidade
Artefato de saida |+ Esquema Orientado a Objetos

Fonte: Elaborado pelo autor

3.1.2 Engenhariareversa pararecuperacao de diagramas de caso de uso

3.1.2.1.

Defini¢cdo da técnica

A técnica apresentada por Pereira, Martinez e Favre (2011), constroi diagramas

de caso de uso a partir da analise estatica de um cddigo orientado a objetos. Os

diagramas de caso de uso resultantes desta técnica precisam ter os seguintes

elementos:

Casos de uso: Cada método publico de uma classe € construido um caso
de uso correspondente.

Generalizacdes: Se existe um método em duas classes diferentes com o
mesmo nome, é criada uma generalizagao.

Dependéncias: Se um método publico chama outro método publico, € criado

uma relagéo de dependéncia entre estes 2 métodos.

A técnica realiza as seguintes etapas:

Criar o codigo abstrato da classe, realizando as seguintes tarefas:
o ldentificar declaracdes: No codigo fonte sdo linhas que declaram
atributos, métodos e construtores.
o A partir de cada declaracédo identificada, construa o cédigo abstrato,

sendo sua sintaxe: [nome da classe]. [nome do método].[declaracao]

48

Identificar instru¢des que séo alocacdes, assinatura e invocacgodes de

@)
métodos, para cada instrucdo, gere sua sintaxe que deve ser [nome
da classe]. [nome do método].[instrucao].

o Desconsidere condicdes, loops, retornos e importacoes.

Aplicar algoritmo de recuperacdo de diagramas de caso de uso como

mostra a Figura 10.

Figura 10 - Algoritmo de Recuperacédo de Diagramas de Caso de Uso

= initialization of sets

useCases «{}
dependences « {}
generalizations «{ }

— generating useCases set

for each public method m
useCases « useCases . {m}

endfor

— generating dependences set
for each expr: ‘p.g()’ / g is a public method
m <« method (scope(expr))
dependences «+ dependences { (m, g) }
endfor

— generating generalizations set
for each m; in useCases
for each my= m; in useCases
if name (my) = name(m;)
if class (my) is parent of class (m;)
generalizations< generalizations . {{m;,my)}
else
if class (mi) is parent of class (mx)
generalizations«—generalizations {{my,m;)}
endif
endif
endif
endfor
endfor

Fonte: Pereira, Martinez e Favre (2011)

49

Esta técnica se limita a identificacdo dos casos de uso pela andlise estatica,
pois a analise ndo € realizada enquanto o sistema esta em funcionamento, ndo sendo
possivel identificar os atores do sistema. De acordo com os autores, para identificar
os fluxos do caso de uso seria necessaria uma analise dindmica no cédigo fonte,
extraindo os fluxos do sistema em funcionamento ou através da utilizagdo de casos
de teste. Os autores citam algumas etapas para recuperar casos de uso, que tem
como base o modelo utilizado por Tonella (2005), que sera explicado no item 3.1.3.
As informac0des obtidas neste modelo permitem construir os diagramas de assinaturas
de interface, template de interface e template de objetos no item 3.2.1, pois o resultado
desta técnica expressam o0s servi¢os relacionadas com cada entidade identificada no
item 3.1.1.

3.1.2.2. Aplicagdo da Técnica

O objetivo da técnica no processo desse trabalho é analisar os servicos que
sdo responsaveis pelas classes identificadas no diagrama de classes da técnica
anterior. Para utilizar essa técnica no processo descrito no presente trabalho, esta foi

dividida no seguinte processo:

50

Figura 11 - Processo de recuperacdo de diagramas de caso de uso

Desenvolvedor

Diagrama
de Classes

‘Codigo :
. Fonte

1.Gerar Cadigo Al zré)rEi)t(ienfzta;ra Construir
Abstrato da 9 P diagrama de
recuperacio de
Classe caso de uso

14
Diagrama
‘de casode
Y uso

Tabela do algoritimo
de recuperagio de
caso de uso

Cadigo
Abstrato

caos de uso

Fonte: Elaborado pelo autor

Como a Figura 11 mostra, o desenvolvedor utiliza a técnica em uma série de

atividades que correspondem as etapas da técnica de engenharia reversa. Cada

atividade é detalhada nas tabelas a seguir:

Tabela 8 - Descri¢cao da atividade "Gerar cédigo abstrato da classe"

Atividade Al. Gerar cbdigo abstrato da Classe
Tarefas T1.ldentificar classes que manipulam a classe de objeto do
modelo orientado a objetos.
T2.Para cada classe identificada, gerar um codigo abstrato de
cada classe.
Artefato + Esquema orientado a objetos
de entrada « Cadigo Fonte

Artefato de saida

» Codigo Abstrato

51

Elaborado pelo autor

Tabela 9 - Descricdo da atividade "Aplicar algoritmo de recuperacédo de caso de uso"

Atividade A2. Aplicar algoritmo de recuperacéo de caso de uso

Tarefas T1.Criar uma tabela com a seguinte estrutura de colunas
(Caso de Uso, Dependéncia, Generalizacao)

T2.A partir do cédigo abstrato, aplicar o algoritmo de analise
estatica:

T3.ldentificar casos de uso.

T4.Identificar generalizacdes.

T5.Identificar dependéncias.

Artefato + Esquema orientado a objetos

de entrada + Codigo Fonte

Artefato de saida |+« Tabela de saida do algoritmo de analise estética

Fonte: Elaborado pelo autor

Tabela 10 - Descri¢cédo da atividade "Construir diagrama de caso de uso"

Atividade A3. Construir diagrama de caso de uso

Tarefas T1.Modelar casos de uso
T2.Modelar generalizagbes

T3.Modelar dependéncias

Artefato + Tabela de saida do algoritmo de analise estatica

de entrada + Cadigo Fonte

Artefato de saida |+ Tabela de saida do algoritmo de analise estatica

Fonte: Elaborado pelo autor

3.1.3 Engenhariareversa pararecuperacao de diagramas de sequéncia

3.1.3.1. Definicdo da técnica

52

A técnica apresentada por Tonella (2005) consiste em utilizar a engenharia reversa
para modelar diagramas de sequéncia, com o0 objetivo de entender o comportamento
interno das funcionalidades do software e as mudancas que um objeto tem através do

fluxo de mensagens entre métodos. A técnica do autor consiste nas seguintes etapas:

e Extrair o codigo abstrato do método, utilizando a mesma técnica do item
3.1.2;

e Construir um OFG (grafo de fluxo de objetos) através do codigo abstrato,
para identificar as mudancas que o objeto sobre ao decorrer do método;

e |dentificar as chamadas de métodos, o objeto que realiza a chamada e os
objetos que sdo impactados pela chamada;

e I|dentificar condicdes e loops codificados.

As informacdes obtidas neste modelo permitem construir comportamento dos
servi¢os do diagrama de assinaturas de interfaces no item 3.2.1, pois o resultado desta
técnica expressa como funciona os servi¢cos por cada caso de uso identificado no item
3.1.2.

3.1.3.2. Aplicacdo da Técnica

O objetivo desta técnica neste trabalho € modelar o comportamento interno dos
casos de uso identificados na técnica anterior. Para utilizar esta técnica no processo

descrito por este trabalho, ela foi dividida no seguinte processo:

Figura 12 - Processo de recuperacdo de diagrama de sequéncia

53

Cadigo Grafo de)
Abstrato Fluxo de Dlagrama.de
Objetos Sequéncia

Desenvolvedor

1. Transformar o
cadigo fonte em
cadigo abstrato

Construir
Diagrama de
Sequéncia

Construir
St OFG

Fonte: Elaborado pelo autor

Como a Figura 12 mostra, o desenvolvedor utiliza a técnica em uma série de

atividades que correspondem as etapas da técnica de engenharia reversa. Esta

técnica, assim como a técnica para recuperacao do caso de uso, nao identifica um

ator externo do sistema, e por ndo ser uma analise dinAmica, ndo identifica quais

fluxos ocorrem durante o funcionamento do sistema. Cada atividade é detalhada nas

tabelas a seguir:

Tabela 11 - Descricdo da atividade "Transformar método em cddigo abstrato"

Atividade Al. Transformar método em codigo abstrato
Tarefas T1.Identificar declaracdes
T2.Identificar Instrucdes
Artefato » Diagrama de caso de uso
de entrada « Codigo Fonte

Artefato de saida

+ Cadigo Abstrato

54

Fonte: Elaborado pelo autor

Tabela 12 - Descrigdo da atividade "Construir cddigo OFG do cédigo abstrato”

Atividade A2. Construir OFG do codigo abstrato
Tarefas T1.ldentifique as declaracbes de objetos e instru¢cbes do
codigo abstrato
T2.Crie um no para cada objeto declarado e para cada
instrucdo que modifique o fluxo deste objeto
T3.Para cada relacionamento entre as declaracdes e as
instrucdes que modificam este objeto, crie uma ponta
entre os nos.
Artefato » Caodigo abstrato
de entrada

Artefato de saida

» Grafo de fluxo de objetos

Fonte: Elaborado pelo autor

Tabela 13 - Descri¢céo da atividade "Construir diagrama de sequéncia”

Atividade A3. Construir diagrama de sequéncia
Tarefas T1.Crie uma tabela com as seguintes colunas (Linha,
Chamada, Fontes, Alvos)
T2.Analisar chamadas de métodos no OFG e identifique os
métodos.
T3.Analisar o método, mapeando as ocorréncias de loops e
condicdes.
T4.Inserir marcas do diagrama de sequéncia.
Artefato « Caodigo fonte
de entrada » Grafo de fluxo de objetos

Artefato de saida

+ Diagrama de sequéncia

Fonte: Elaborado pelo autor

55

3.2 Etapa 2: Construcédo de uma descricao arquitetural

Esta secdo apresenta a segunda etapa do processo descrito neste trabalho, a
justificativa da escolha da visdo computacao, a relacdo dos artefatos gerados na
primeira etapa com os artefatos que serdo gerados nesta etapa e 0s conceitos

utilizados na primeira etapa com relacédo aos conceitos desta etapa.

O objetivo desta etapa é utilizar as informacdes de modelos do nivel de fungéo
para descrever a arquitetura do software. Os modelos resultantes da primeira etapa
conceitualmente expressam as funcionalidades e comportamento de um software,
através de diagramas estruturais como o diagrama de classe e diagramas de
comportamento como os diagramas de caso de uso e de sequéncia, além disso, estes
diagramas sao utilizados pela UML4ODP para representar a visdo computacdo de
uma arquitetura. Portanto, a visdo computacdo € a visdo escolhida para realizar a
descricdo arquitetural, pois estd visdo tem o papel de expressar 0s servicos e o

comportamento destes servigos dentro de uma descri¢cao arquitetural.

De acordo com Romero (2011), os conceitos da UML mapeiam em grande parte
os conceitos do ODP, portanto, é viavel construir um modelo da visdo computacao,
baseando-se em um modelo UML. O autor apresenta uma tabela correspondendo os

conceitos da visdo computacdo do ODP com elementos UML pela tabela a seguir:

Tabela 14 - Tabela de perfil de conceitos ODP e UML

1. Conceito ODP 2. Elemento UML 3. Esteredtipo

Computacional Component <<CV_CompObijectTemplate>>

Object Template

Computacional Port <<CV_ComplnterfaceTemplate>>

interface template

Signal Interface Interface(s) <<CV_SignallnterfaceSignature>>
Signature
Operation Interface(s) <<CV_OperationinterfaceSignature

Interface Signature >>

56

Tabela 14 - Tabela de perfil de conceitos ODP e UML (Concluséo)

Stream Interface Interface(s) <<CV_StreaminterfaceSignature>>
Signature
Announcement Reception <<CV_AnnouncementSignature>>
Signature
Interrogation Reception <<CV_lInterrogationSignature>>
Signature
Termination Reception <<CV_TerminationSignature>>
Signature
Signal signature Reception <<CV_SignalSignature>>
Flow Signature Reception <<CV_FlowSignature>>

Computacional
Object

InstanceSpecification

<<CV_Object>>

Signal Interface

Port(interaction Point)

<<CV_Signalinterface>>

Operation Port (Interaction <<CV_Operationinterface>>
Interface Point)
Stream Interface Port (Interaction <<CV_Streaminterface>>
Point)
Signal Message <<CV_Signal>>
Flow Interaction/Message <<CV_Flow>>
Announcement Message <<CV_Announcement>>
Invocation Message <<CV_Invocation>>
Termination Message <<CV_Termination>>

Fonte: Romero e Vallecillo, 2005

57

Como a tabela mostra, para cada conceito da visdo computacédo do ODP, sua
representacéo pode ser feita por um elemento UML, desde que o elemento no modelo
seja categorizado por um estere6tipo do conceito, este esterestipo categoriza o
conceito apresentado em cada elemento do modelo arquitetural. O processo de
construir modelos arquiteturais baseado na tabela 13 é o objetivo da primeira atividade
da segunda etapa. As atividades de construcdo da descricdo arquitetural sao

apresentadas na Figura 13:

Figura 13 - Processo de contrugéo da descri¢céo arquitetural

o ’] RN >
Modelos da Deslcngao
. Arquitetural
: VIS0 : :
S . Computacdo ! :
- : : :
= . .
T : :
d . .
Construir descricio
arquitetural
Construir modelos da
Wisdo Computacio
Fonte: Elaborado pelo autor
Tabela 15 - Descri¢céo da atividade "Construir descricdo arquitetural”
Atividade Al. Construir descricdo arquitetural
Tarefas T1.Definir o propadsito do sistema

T2.Definir as caracteristicas do sistema
T3.Definir os stakeholders

T4.Inserir a visdo computacao

58

T5.Inserir os modelos da visdo computagao
T6.Inserir o ponto de vista computacional

T7.Inserir os modelos do ponto de vista computacional

Artefato Modelos da visdo computacao

de entrada

Artefato de saida | Descricdo Arquitetural

Fonte: Elaborado pelo autor

3.2.1 Construir Modelos da Visao Computacao

Esta secéo apresenta a base conceitual para especificacdo da visdo computacéo,

sua contribuicdo para a compreensdo da arquitetura do sistema, limitacbes e as

atividades e tarefas do processo para especificar este ponto de vista.

Figura 14 - Processo de constru¢do da visdo computacao

D

Mocjelos

Recupgrados EI : :
i { Esntirada B : D 5 § B
: : visdo : diagrama de : : Diagiama

=]

= : mputacio : emplate jagrama de : 7 : de tipos

g : : compitagdo t osjléitosdef ‘:E"?pl_me :e : DlagraéTa de ! dedia’_)d_os

o I I | T mefecss L TN e

E 1. Construir a . 2. Construir o - 3. Construir o . %.COHSUUEO 5. Construir o
estrutura da visdo diagrama de . diagrama de . asls:?gz:?ljmrzs dee diagrama de tipos
computagdo template de objeto template de interface interfaces de dados
Fonte: elaboracéo do autor
Tabela 16 - Descricdo da atividade "Construir uma estrutura da visdo computacao”

Atividade A2. Construir estrutura da visdo computacao
Tarefas T1.Construir um diagrama de pacotes com 0s seguintes

pacotes:

59

Template de objetos
Template de interfaces

Assinaturas de Interfaces

o o o p

Tipos de dados

Artefato

de entrada

Artefato de saida

Diagrama da estrutura da visdo computacao

Fonte: Elaborado pelo autor

Tabela 17 - Descri¢cdo da atividade "Construir o diagrama de template de objetos”

Atividade A3. Construir o diagrama de template de objetos
Tarefas T1.Identificar objetos computacionais
T2.Para cada objeto identificado na tarefa 1, criar uma classe
correspondente com o esteredtipo “Objeto da visdo
computacao”
Artefato Diagrama de caso de uso
de entrada

Artefato de saida

Diagrama de assinaturas

Fonte: Elaborado pelo autor

Tabela 18 - Descricdo da atividade "Construir o diagrama de templates de interfaces"

Atividade A4. Construir o diagrama de template de interfaces
Tarefas T1.Identificar interfaces da visdo computacéo
T2.Para cada interface identificado no passo 1, criar uma
classe correspondente com o esteredtipo “Interface da
visdo computacao”
Artefato Diagrama de caso de uso
de entrada

Artefato de saida

Diagrama de assinaturas

Fonte: Elaborado pelo autor

60

Tabela 19 - Descricdo da atividade "Construir o diagrama de assinaturas”

Atividade

A5. Construir o diagrama de assinaturas

Tarefas

T1.Identificar assinaturas de interface de operacgdes

T2.Para cada assinatura identificada na tarefa 1, construir
uma classe do estereétipo “Assinatura de interface da
visdo computacao”

T3.ldentificar sinais de interface

T4.Para cada sinal identificado, construir um relacionamento

entre objetos de assinaturas de interface correspondentes

Artefato
de entrada

Diagrama de caso de uso

Artefato de saida

Diagrama de assinaturas

Fonte: Elaborado pelo autor

Tabela 20 - Descri¢cdo da atividade "Construir diagrama de tipo de dados"

Atividade A6. Construir o diagrama de tipos de dados
Tarefas T1.ldentificar classes no esquema orientado a objetos
T2.Identificar parametros dos métodos nas interacdes dos
diagramas de sequencia
T3.Para cada item identificado no passo 1, modele uma
classe com o esteredtipo “Tipo de dado da visédo
computacao”
T4.Para cada item modelado no passo 2, identificar seus
atributos
T5.Para cada item identificado no passo 3, modelar os
atributos correspondentes a cada classe
Artefato de | Esquema orientado a objetos
entrada Diagrama de sequencia

Artefato de saida

Diagrama de tipos de dados

Fonte: Elaborado pelo autor

61

Tabela 21 - Descricéo da atividade "Construir o diagrama de comportamento da assinatura”

Atividade A7. Construir o diagrama de comportamento da assinatura
Tarefas T1.Construir um diagrama de sequéncia do estere6tipo
“Comportamento da visdo computagao”
T2.ldentificar ciclos de vida
T3.Para cada ciclo de vida, modelar um ciclo de vida do
estereodtipo “Objeto da visdo computagao”
T4.ldentificar fluxo
T5.Identificar interacdes
T6.Para cada mensagem do fluxo, modelar um sinal
correspondente no diagrama construido no passo 1
T7.Para cada interacdo identificada no passo 5, modelar um
sinal com o nome correspondente e 0s parametros iguais.
Artefato Diagrama de sequéncia
de entrada

Artefato de saida

Diagrama de comportamento

Fonte: Elaborado pelo autor

3.3 Concluséo do capitulo

Este processo limita-se em analisar o software e descrever sua arquitetura, ndo

em um processo de reengenharia de um sistema em si, pois, 0 objetivo deste processo

e auxiliar as equipes de desenvolvimento a compreender a arquitetura do sistema e

discutir as necessidades dos stakeholders adequadamente e o impacto das

adaptacdes que sdo necessarias para atender estas necessidades, este processo nao

define linguagens de programacdo, tecnologias e ferramentas especificas para

construir os modelos, estas definicbes sdo exemplificadas no capitulo 4.

62

4 ROTEIROS DO PROCESSO

Este capitulo apresenta o roteiro operacional que foi aplicado do processo
especificado no capitulo 3. O Cenario de aplicacdo deste trabalho envolve uma
organizagdo do setor comercial que deseja obter um sistema de comércio eletrdnico,
entretanto, esta organizacdo ndo possui uma area de Tl especializada para
desenvolvimento de aplicacbes corporativas, portanto, a empresa necessitou
terceirizar a implementacdo do ecommerce por uma empresa de solugcbes e

consultoria em TI.

A empresa contratada fechou um acordo para criar 0 sistema, e como solucéo,
apresentou um software de comércio eletrénico de cdédigo aberto, afirmando que o
software possuia diversas funcionalidades que a organizacdo desejava utilizar em seu
modelo de negdcio, além disso, afirmaram que apos analisar as informacdes do
software no site oficial e testar o sistema em um ambiente controlado, identificaram
que o software tinha configuracdes que permitiam adequar o software com as
necessidades da organizacdo. O sistema apresenta as seguintes caracteristicas

técnicas:

e O sistema é de cddigo aberto do paradigma Orientado a Objetos.

e O sistema é uma aplicacao web, utilizando o framework ASP.NET MVC que
utiliza a linguagem C#.

e O sistema utiliza um banco de dados relacional, criado na tecnologia SQL
2008 R2.

¢ O sistema é hospedado no servidor IIS.

e Como artefatos do sistema, o desenvolvedor possui o cédigo fonte e o script

de criacdo do esquema SQL do banco de dados

Depois de testar em conjunto a aplicacdo com a empresa de consultoria, concluiu-
se que apesar do sistema mapear seus interesses, 0 sistema precisava estar
adequado as regras de negocio de frete, adicionar novos métodos de pagamento,
modificar os campos para registro do cliente, modificar apresentacéo das tabelas no
modulo administrativo. Sendo assim, a empresa de consultoria decidiu realizar a

adaptacao.

63

Durante a fase de especificagdo do ecommerce adaptado, a equipe de
desenvolvimento considerou procurar alguma documentacdo do projeto de codigo
aberto, para que fosse possivel estimar o impacto, tempo e recursos que seriam
necessarios para realizar as adaptacdes. Entretanto, a documentacdo referente a
arquitetura, ndo era detalhada, reforcando os resultados da pesquisa realizada por
Ding et al (2014). A falta da documentacgéo arquitetural do ecommerce resultou nos

seguintes obstaculos durante o projeto de adaptacéo.

e A equipe de desenvolvimento precisou de um tempo acima do esperado
para entender o cédigo fonte do sistema,;

e A comunicacédo entre o cliente da organizacéo, o lider do projeto e a equipe
de desenvolvimento entravam em conflito por modificacbes que o cliente
considerava simples de implementar e a equipe de desenvolvimento
afirmava que havia uma complexidade alta em realizar tal mudanca;

e Os Prazos eram definidos com base apenas na inferéncia e especialidade
do cdédigo fonte da equipe de desenvolvimento e geralmente acabavam

sendo ultrapassados;

A empresa de consultoria deseja que as futuras alteracbes ndo tenham estes
obstaculos, além disso, a empresa tem como objetivo fornecer o ecommerce para
novos clientes que possam desejar a ado¢éo e adaptacdo do sistema de comércio
eletrbnico, sendo assim, a equipe de desenvolvimento da empresa entende que é
necessario criar as adaptacées de forma que elas sejam reutilizadas para outros
clientes. Estas adaptacdes dos servicos e funcionalidades do ecommerce precisam
estar de acordo com uma arquitetura que permita o reuso, e para isso, os stakeholders
do projeto precisam entender o ecommerce através de modelos que descrevam a

arquitetura do sistema atual.

A partir destes obstaculos e como ndo foi possivel realizar alguma analise
eficiente sobre o sistema a partir de uma documentacao, assim como a ISO/IEC 14764
(2006) sugere, sera necessario realizar a engenharia reversa ao nivel arquitetural em

partes do codigo para uma analise sobre a adaptacéo do sistema.

4.1.1 Aplicacdo do Processo e Especificacdo do Roteiro

64

Esta secédo apresenta a aplicacdo do processo apresentado no capitulo 3 e a
criacao do roteiro operacional a partir das atividades modeladas.

A aplicacao deste roteiro tem como necessidade o0 seguinte requisito especificado

pelo cliente.

e Modificar o cadastro do cliente para identificar se a pessoa é fisica ou juridica

e Remover campos de endereco do registro do cliente para utilizar apenas o
registro de endereco

e Adicionar campos de CNPJ e Inscricdo Estadual

e Separar o campo de endereco no registro de endereco entre logradouro,

namero, complemento e bairro

4.1.2 Roteiro darecuperacdo do esquema orientado a objetos

Tabela 22 - Descri¢céo do roteiro da atividade "Construir a lista de tabelas do esquema
relacional”

Atividade | A1. Construir a Lista de Tabelas do Esquema relacional

Roteiro 1. Criar uma lista com a seguinte estrutura:

Lista de tabelas de esquema relacional
Cl. Nome da | C2. Atributos Cs. Chaves | C4. Chaves

Tabela Primarias Estrangeiras

2. Abra o bloco de notas e abra o script do banco de dados para
identificar instrugdes de criacdo de tabela ex:“Create Table [Nome da
Tabela] {Lista de Atributos} .

3. Para cada instrucéo identificada no passo 2, inserir um registro na
lista criada no passo 1, inserindo na coluna “C1” o nome da tabela
que esta no script, ex:

Cl. Nome da| C2. Atributos | C3. Chaves | CA4. Chaves

Tabela Primarias Estrangeiras

Nome da Tabela

65

4. Para cada registro inserido no passo 3, inserir 0s atributos
correspondentes aos registros das tabelas identificadas no passo 2,

ex:
C1. Nome da Tabela C2. Atributos
Nome da Tabela Atributo 1 (tipo)

Atributo 2 (tipo)

5. Para cada instrugao identificada no passo 2, identificar atributos
categorizados como chaves primaria ex:“Atributo 1 (tipo) PRIMARY
KEY”

6. Para cada item identificado no passo 5, inserir na lista criada no
passo 1 no registro da tabela que a chave pertence, as chaves
primérias identificadas no passo 5 na coluna “C3”, ex:

C1. Nome da Tabela | C2. Atributos C3. Chaves Primarias

Nome da Tabela Atributo 1 (tipo) | Atributo 1 (tipo)

Atributo 2 (tipo)

7. ldentificar chaves estrangeiras, analisando instru¢cdes que tenham a
seguinte estrutura: “CONSTRAINT [Nome da chave estrangeira]
FOREIGN KEY (Nome do atributo da chave estrangeira)
REFERENCES Tabela principal (Atributo Principal)”.

8. Para cada item identificado no passo 7, inserir na lista criada no
passo 1 um registro correspondente a tabela pertencente a chave na

seguinte estrutura:

C1. Nome da Tabela | C2. Atributos C4. Chaves Estrangeiras
Nome da Tabela Atributo 1 (tipo) | [Atributo 2 (Nome da
Atributo 2 (tipo) Tabela Principal)]

Fonte: Elaborado pelo autor

Tabela 23 - Descricdo do roteiro da atividade "ldentificar classes de objetos"

Atividade

Identificar classes de objetos

66

Roteiro 1. Criar uma lista a seguinte estrutura:
Tabela de Classes de Objetos
Cl.1d | C2. Nome da | C3. Atributos da | C4. Tabela
Classe Classe Correspondente
2. ldentificar as tabelas do banco de dados que sejam categorizadas
como classes de objetos
Identificar atributos das tabelas
4. Para cada Tabela identificada no passo “2”, inserir um registro na
lista criada no passo 1, com as seguintes consideracoes:
a. O campo Id é sequencial
b. O registro da coluna “C2” é idéntico ao nome da tabela
c. Os atributos devem ser expressados iguais aos atributos da
tabela, na estrutura [Nome do atributo (Tipo do atributo)]
d. O campo “C4” é inserido o nome da tabela correspondente
a classe registrada.
Fonte: Elaborado pelo autor
Tabela 24 - Descricéo do roteiro da atividade "ldentificar associacdes"
Atividade Identificar associacfes
Roteiro 1. Criar uma Lista com a seguinte estrutura:

Lista de Associacdes
Cl.Id | C2.Classe 1l | C3. Classe 2 | C4. Nome da Associacao

2. ldentifique todas as tabelas associativas.
3. Para cada tabela identificada, insira um registro na lista de

associacdes na seguinte estrutura:

Cl.Id C2. Classe de|C3. Classe de|C4. Nome
objeto 1 objeto 2 da
Associacao

Sequencial | Nome da Classe | Nome da Classe | R[Id] — [Id
(correspondente ao | (correspondente da classel]
relacionamento ao relacionamento | [Id da

classe 2]

67

identificado na | identificado na

tabela associativa) | tabela associativa)

Fonte: Elaborado pelo autor

Tabela 25 - Descricéo do roteiro da atividade "ldentificar Herancgas"

Atividade

Identificar herancas

Roteiro

1. Criar uma Lista com a seguinte estrutura:

Lista de Herancas
Cl.Id | C2. Classe Pai | C3. Classe Filho | C4. Nome da Heranca

2. Analisar o esquema relacional e identificar todas as tabelas que
possuam uma relacdo de heranca (tabelas que possuem a mesma
chave primaria).

3. Para cada tabela identificada no passo 2, inserir um registro na lista
criada no passo 1, na seguinte estrutura:

a. O Id segue a seguinte estrutura: “C [id da classe associada 1]
R [Numero sequencial do relacionamento]”

b. A classe pai corresponde a classe que possui o atributo da
chave primaria

c. A classe filha corresponde a classe que utiliza a chave

primaria da classe pai

Fonte: Elaborado pelo autor

Tabela 26 - Descricdo do roteiro da atividade "ldentificar Agregacdes”

Atividade

Identificar Agregacdes

Roteiro

1. Criar uma Lista com o0 a seguinte estrutura:

Lista de Agregacgoes

Cl.Id | C2. Classe | C3. Classe | C4. Nome da agregacéao
Agregadora Agregada

68

Identifique todas as tabelas que possuam relacionamento de
agregacdao (tabelas que a chave primaria tenha mais de um atributo
e pelo menos um deles ndo € uma chave estrangeira (tabelas que
possua uma chave primaria composta, mas que pelo menos um dos
atributos ndo seja uma chave estrangeira).
Para cada Tabela Identificada, registre uma agregacdo com as
seguintes condicodes:

a. Classe agregada = Classe que utiliza o atributo de outra

classe.
b. Classe agregadora = classe que fornece o atributo usado

pelas classes agregadas

Fonte: Elaborado pelo autor

Tabela 27 - Descricdo do roteiro da atividade "ldentificar cardinalidades"

Atividade

Identificar Cardinalidades

Roteiro

1. Crie uma Lista com a seguinte estrutura:

Lista de Cardinalidades/Multiplicidades

Cl. Id|C2. C3. Cardinalidade | C4. Multiplicidade

Relacionamento

Para cada registro de relacionamento entre 2 classes nas listas de
associacles, herancas e agregacoes, identificar suas cardinalidades.
Para cada cardinalidade identificada, insira um registro na lista criada
no passo 1, com as seguintes consideracgoes:

a. Id: Sequencial (1,2,3,4)

b. Relacionamento = (Nome do relacionamento)

c. Cardinalidade (ex: 1 para 1,1 para muitos, muitos para
muitos)

d. Multiplicidade

(ex: 1 para 1,1 para muitos, muitos para

muitos)

Fonte: Elaborado pelo autor

69

Tabela 28 - Descri¢do do roteiro da atividade "Construir esquema orientado a objetos"

Atividade | Construir esquema orientado a objetos

Roteiro 1. Crie um diagrama de classes com as seguintes consideracoes:

a. Para cada classe de objetos, construa uma classe
respectiva com 0 mesmo nome e 0S mesmos atributos
sendo todos publicos,

b. Para cada relacionamento na tabela de associacoes,
heranca e agregacdo, construa no diagrama um
relacionamento entre as classes

c. Para cada cardinalidade entre as relacbes, expressar a

multiplicidade entre o relacionamento.

Fonte: Elaborado pelo autor

4.1.3 Roteiro pararecuperacao de diagrama de caso de uso

Tabela 29 - Descricéo do roteiro da atividade "Gerar cédigo abstrato”

Atividade | Gerar Cédigo Abstrato

Roteiro 1. Abra o Visual Studio, e na janela de “explorador da solugao”
Identificar classes que manipulam as classes de objetos
identificadas no item 4.1.2 (Classes de controller e services) ex:
public class [Nome da classe][Service]).

1. Para cada classe identificada, gerar seu cédigo abstrato seguindo
as seguintes consideracoes:

a. Uma classe possui 0 ou muitas declaracdes seguida de 0 ou
muitas instrucoes.

b. Declaracbes séo declaracbes de atributos, métodos e
construtores, a partir de cada declaracéo, gere sua sintaxe
que deve ser [nome da classe]. [nome do
método].[declaracao])

c. Instrucbes sao alocacdes, assinatura e invocagOes de

meétodos, para cada instrucéo, gere sua sintaxe que deve

ser [nome da classe]. [nome do método].[instrucao].

70

d. (obs) Desconsidere condicbes, loops, retornos e

importagoes.

Fonte: Elaborado pelo autor

Tabela 30 - Descri¢cdo do roteiro da atividade "Executar algoritmo de recuperacéo de caso de

uso
Atividade Executar algoritmo para andlise estatica
Roteiro 1. Criar uma tabela com a seguinte estrutura de colunas:

Tabela do Algoritmo de Recuperacéo de Caso de Uso

Caso de Uso Dependéncias Generalizacdes

2. A partir do codigo abstrato, aplicar o algoritmo de recuperacéo de

caso de uso:
Para os casos de uso, generalizacbes e dependéncias
identificados no passo 2, insira um registro na tabela criada no

passo 1

Fonte: Elaborado pelo autor

4.1.4 Roteiro pararecuperacao de diagrama de sequéncia

Tabela 31 - Descricéo do roteiro da atividade "Gerar cédigo abstrato”

Atividade

Gerar Codigo Abstrato

Roteiro

1.

Abra o visual studio, e na janela de “explorador da solugao”
Identificar classes que manipulam as classes identificadas
correspondentes aos requisitos (Classes de controller e services),
ex: public class [Nome da classe][Service]).
Para cada classe identificada, gerar um cédigo abstrato de cada
classe com as seguintes consideracgodes:

a. Uma classe possui 0 ou muitas declaragdes seguida de 0 ou

muitas instrucoes.
b. Declaracbes séo declaracbes de atributos, métodos e

construtores, a partir de cada declaracéo, gere sua sintaxe

71

que deve ser [nome da classe]. [nhome do
método].[declaracao])

c. Instrucdes sdo alocacdes, assinatura e invocacfes de
meétodos, para cada instrucdo, gere sua sintaxe que deve
ser [nome da classe]. [nome do método].[instrucao].

d. (obs) Desconsidere condicbes, loops, retornos e

importacdes.

Fonte: Elaborado pelo autor

Tabela 32 - Descricdo do roteiro da atividade "Gerar diagrama de fluxo de objetos"

Atividade

Gerar diagrama de fluxo de objetos

Roteiro

1.
2.
3.

Abra o Microsoft Visio

Crie um novo grafo

Identifique as declaracdes de objetos e instrucbes do codigo
abstrato

Crie um n6 no selecionando na caixa de ferramentas do Visio
para cada objeto declarado e para cada instrucéo que modifique
o fluxo deste objeto

Para cada relacionamento entre as declaragfes e as instrucdes
que modificam este objeto, crie uma ponta entre 0s ndés

selecionando caixa de ferramentas do Visio.

Fonte: Elaborado pelo autor

Tabela 33 - Descricéo do roteiro da atividade "Construir diagrama de sequéncia”

Atividade | Construir diagrama de sequéncia
Roteiro 1. Crie uma tabela com as seguintes colunas (Linha, Chamada,
Fontes, Alvos)
2. Analisar chamadas de métodos no OFG, defina o objeto alvo
(objeto que chama o método) e os alvos (objetos influenciados
pela chamada do método)
3. Analisar o método, mapeando as ocorréncias de loops e

condicbes

4.

Inserir marcas (if, loop, alt, opt) entre o grupo de mensagens

respectivos.

Fonte: Elaborado pelo autor

4.1.5 Roteiro para construcdo de uma descricao arquitetural.

Tabela 34

- Descrigao da atividade "Construir descri¢éo arquitetural”

Atividade

Construir descricéo arquitetural (Apéndice 1)

Tarefas

gue se encontra no site da ISO 42010
Abrir o documento no Microsoft Word
Remover as instru¢des do documento
Definir o tipo de descricédo arquitetural
Definir o propdsito do sistema

Definir as caracteristicas do sistema
Definir os Stakeholders

Inserir a visdo computacao

© 0 N oo g bk Db

Inserir os modelos da visdo computacéo

10. Inserir o ponto de vista computacional

11.Inserir os modelos do ponto de vista computacional
12.Escrever notas com consideracdes sobre o documento

13.Inserir a bibliografia

documento.

Artefato de

entrada

Modelos da visdo computacao

Artefato de saida

Descrigcéo Arquitetural

Fonte: Elaborado pelo autor

1. Baixar o documento de modelo de descricdo arquitetural

14.Remover outros itens que nado foram descritos no

73

4.1.6 Roteiro para especificacdo da visdo computacédo

Tabela 35 - Descri¢céo do roteiro da atividade "Construir estrutura da visdo computacéo”

Atividade

Construir estrutura da visdo computacao (Item 4.1.5 do apéndice 1)

Roteiro

1. Abra o software StarUML.

2. Crie um novo projeto chamado: “Descrigédo arquitetural”

3. Crie um pacote com o nome “Especificagao visao computacao”

4. Crie um diagrama de classes e insira 0 pacote criado no passo
3.

5. Crie quatro pacotes dentro do pacote criado no passo 3 com 0s
nomes: “Template de objetos”, "Assinaturas de interface”,

"Template de interfaces”, "Tipos de dados”

Fonte: Elaborado pelo autor

Tabela 36 - Descri¢cdo do roteiro da atividade "Construir o diagrama de template de objetos"

Atividade

Construir o diagrama de template de objetos (Item 4.1.2 do apéndice
1)

Roteiro

1. Abra o projeto “Descrigao arquitetural”

2. Crie um diagrama de classes dentro do pacote chamado
“Especificagao visao computacdo” chamado “Template de
objetos”

3. ldentifique todas as classes correspondentes aos casos de uso
recuperados na etapa 1 do processo.

4. Para cada classe identificada no passo 3, crie uma classe com

0 esteredtipo <<CV_Object>>

Fonte: Elaborado pelo autor

Tabela 37 - Descri¢céo do roteiro da atividade "Construir o diagrama de assinaturas”

Atividade

Construir o diagrama de assinaturas (Item 4.1.5 do apéndice 1)

74

Roteiro

Abra o projeto “Descri¢cao arquitetural”

Crie um diagrama de classes dentro do pacote chamado
“Especificagdo visdo computagdo” chamado “Diagrama de
assinaturas”

Identifique todas as classes correspondentes aos casos de uso
recuperados na etapa 1 do processo.

Para cada classe identificada no passo 3, crie uma classe com
0 estere6tipo <<CV_Signature>>

Para cada uso correspondente as classes identificadas no
passo 3, crie um método dentro da classe <<CV_Signature>>

correspondente.

Fonte: Elaborado pelo autor

Tabela 38 - Descri¢cdo do roteiro da atividade "Construir o diagrama de tipo de dados"

Atividade

Construir o diagrama de tipo de dados (Item 4.1.4 do apéndice 1)

Roteiro

1.
2.

Abra o projeto “Descri¢gao arquitetural”

Crie um diagrama de classes dentro do pacote chamado
“Especificagao visdo computagao” chamado “Diagrama de tipos
de dados”

Identifiqgue as classes do esquema orientado a objetos.
Identifique os parametros das interacbes dos diagramas de
sequéncia que o nome seja diferente de alguma classe do
esquema orientado a objetos, e que ndo seja tipo primitivo.
Para cada classe identificada no passo 3, crie uma classe com
0 esteredtipo <<CV_DataType>>, e copie os atributos de forma
idéntica.

Para cada item identificado no passo 4, crie uma classe com o
mesmo estereodtipo do passo 5.

Se houver algum relacionamento de heranga ou agregagéo no
esquema orientado a objetos, copie 0 mesmo relacionamento
entre as classes correspondentes no diagrama de tipos de

dados

75

Fonte: Elaborado pelo autor

Tabela 39 - Descri¢céo do roteiro da atividade "Construir o diagrama de comportamento"

Atividade | Construir o diagrama de comportamento

Roteiro 1. Abra o projeto “Descrigao arquitetural”

2. Selecione uma operacao do diagrama de assinaturas.

3. Crie um diagrama de sequéncia com 0 mesmo nome da
operacédo selecionada no passo 2.

4. A partir do diagrama de sequéncia recuperado da operacao na
etapa 1, especifigue o novo diagrama de sequéncia nas
seguintes consideracfes

1. Para cada ciclo de vida, crie um ciclo de vida com o
mesmo nome, mas com O esteredtipo de
<<CV_Object>>, para correlacionar com o objeto criado
no diagrama de “Templates de objetos”.

2. Copie o fluxo de forma idéntica ao diagrama de
sequencias recuperado, incluindo loops e condicdes.

3. Copie as mensagens e iteracdes entre os ciclos de vida

de forma identica ao diagrama recuperado.

Fonte: Elaborado pelo autor

4.1.7 Resultados Obtidos

A aplicagdo do roteiro foi bem-sucedido, pois foi possivel construir uma
descricdo arquitetural da visdo computacional da parte do sistema analisado e foi
possivel identificar os locais de impacto pela implementacéo dos requisitos informados
pelo cliente. Os resultados desta aplicacéo estdo no apéndice deste trabalho, que € a
descrigcéo arquitetural do software. Uma facilidade para a aplicagdo do processo neste
caso’, da-se pelo fato da facilidade de entendimento do codigo fonte, pois seguia os
padrdes de escrita da linguagem, facilitando a identificacdo dos servicos referentes as
entidades de dominio. Um obstaculo para a aplicacéo foi a necessidade de aplicar o
processo manualmente, sendo que nenhum passo foi possivel de automatizar atraves

de ferramentas de analise de cddigo ou construgdo da descricdo arquitetural. A

76

descricao arquitetural foi construida e adaptada com base no modelo de documento
fornecido pelo site da ISO 42010. Apesar da norma citar a necessidade da validacéo
da arquitetura, esta atividade nédo foi possivel de realizar pois o roteiro é focado

apenas na etapa de recuperacao e especificacdo da arquitetura.

77

5 CONCLUSOES

A contribuicdo deste trabalho foi apresentar quais informacdes do cédigo fonte
sd0 necessérias para realizar um processo de documentar arquiteturas de softwares
que ja foram construidos. Entre as aplicacdes deste trabalho, estdo sistemas open-
source muito utilizados e bem avaliados por comunidades de desenvolvimento de
software, e softwares legados de organizacfes, entretanto, a aplicabilidade deste
trabalho depende das técnicas de engenharia reversa utilizadas, mas as técnicas
podem ser alteradas, possibilitando identificar outras informacdes para contribuir com
a descricao arquitetural, desde que sigam o modelo Horseshoe. Foi identificado que
as informacdes obtidas a partir dos modelos construidos neste trabalho, sdo alguns
dos elementos que possibilitam a construcdo de uma fabrica para tratamento de

codigo open-source no futuro.

Os resultados deste trabalho mostram que o objetivo foi alcancado, sendo
possivel criar uma descrigdo arquitetural dos servicos computacionais de um sistema
a partir do cédigo fonte, permitindo que a equipe de desenvolvimento e novos
integrantes utilizem um meio comum para entender quais servi¢os o software oferece
e como estes servicos estao organizados e como foram implementados, com isso, é
possivel analisar se o0 sistema atende precisamente as necessidades de futuros
Stakeholders e medir o impacto de futuras mudangas no software durante o seu ciclo
de vida, sendo assim, a descricdo arquitetural atendeu as necessidade dos

stakeholders do projeto.

As limitacbes para este trabalho, sdo relacionadas com as limitacbes das
técnicas de engenharia reversa utilizadas, pois suas aplicagbes sao limitadas apenas
a softwares orientados a objetos e a banco de dados relacionais, além disso, caso o
software nao utilize adequadamente os conceitos da orientacdo objeto e padrdes de
projeto, havera dificuldades em aplicar as técnicas apresentadas, sendo assim, sera
necessario utilizar outras técnicas que atendam as necessidades de cada software

gue sera analisado.

78

79

REFERENCIAS BIBLIOGRAFICAS

BORSOI, B. Arquitetura de processos aplicada na integracdo de fabricas de
software. Tese (doutorado em engenharia elétrica) — Universidade de Sao Paulo.
2008.

BREIVOLD, H.; CRNKOVIC, L.; LARSSON, M. A Systematic Review of Software
Architecture Evolution Research. 2011.

CHADHA, D. Emergence of Software Product Line. International Journal of
Computer Applications® (IJCA). 2012

DIAS, L.D. Método de instanciacdo de uma arquitetura de processos aplicado em
fabrica de software. Dissertacdo (Mestrado em Engenharia Elétrica) — Universidade
de S&o Paulo. 2010

DING, W.; et al. How Do Open Source Communities Document Software
Architecture: An Exploratory Survey. Engineering of Complex Computer Systems
(ICECCS). 2014

Information technology — Open Distributed Processing — Use of UML for ODP system
specifications. ISO/IEC/IEEE 19793. 2015.

KILOV, H. et al. The Reference Model of Open Distributed Processing:
Foundations, experience and applications. Computer Standards & Interfaces. v. 35.
2012

LAGUNA, M.A.; HERNANDEZ, C. A Software Product Line Approach for E-
Commerce Systems. E-Business Engineering (ICEBE). 2010.

LININGTON, P.; MILOSEVIC, Z.; TANAKA, A.; VALLECILLO, A. Building Enterprise
Systems with ODP — An Introduction to Open Distributed Processing. Boca
Raton: Chapman and Hall/CRC. 2011.

PEREIRA, C.; MARTINEZ, L.; FAVRE, L. Recovering Use Case Diagrams from
Object Oriented Code: an MDA-based Approach. Information Technology: New
Generations (ITNG), 2011

80

RAMANATHAN, S.; HODGES, J. Reverse Engineering Relational Schemas to
Object-Oriented Schemas. 1996.

ROZANSKI, N.; WOODS E. Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives. Boston: AddisonWesley. 2005.

ROMERO, J.R.; VALLECILLO, A. Modeling the ODP Computational Viewpoint with
UML 2.0: The Templeman Library Example. Enschede: Workshop on ODP for
Enterprise Computing. 2005

Systems and Software Engineering -- Architecture Description. ISO/IEC/ IEEE 42010.
2011.

Software Engineering & Software Life Cycle Processes & Maintenance. ISO/IEC

14794. 2006.

TONELLA, P. Reverse Engineering of Object Oriented Code. ICSE '05 Proceedings
of the 27th international conference on Software engineering. 2005.

TRIPATHY, P.; NAIK, K. Software Evolution and Maintenance: a practitioner’s
approach. Hoboken: John Wiley & Sons, Inc. 2014.

81

APENDICE A - Descricdo arquitetural Arquitetura computacional para Sistema
de ecommerce.

Descricao arquitetural
Arqguitetura computacional para

Sistema de ecommerce

82

83

Conteudo

1 Introducao

Este capitulo descreve itens de informacdes introdutorias da descricao

arquitetural, incluindo a identificacéo e as informacdes complementares.

1.1 Informacéao de identificagcdo da arquitetura

A arquitetura descrita neste documento é a arquitetura no ponto de vista
computacional do ODP de um Sistema de comércio eletrénico (E-commerce),
apresentando as funcionalidades que o Sistema possui, 0 comportamento e estrutura

destas funcionalidades

1.2 Histérico de versoes

Data Versao Descrigao Autor

10/02/2016 | 1.0 Criacé&o do documento Leonardo Gasparini Roméo

1.3 Contexto

O Cenario do sistema desta descricdo arquitetural, envolve uma organizacao
do setor comercial que deseja inserir um sistema de comércio eletrbnico em seu
ambiente, entretanto, esta organizacdo ndo possui uma area de Tl preparada para
desenvolvimento de aplicacbes corporativas, portanto, foi necessario que esta
empresa contratasse 0s servigos terceirizados de outra empresa especializada em

solugdes e consultoria em TI.

A empresa contratada fechou um acordo para criar o sistema, e como solucéo,
apresentou um sistema de comércio eletrébnico open-source, afirmando que o sistema
apoiava diversas funcionalidades que a organizacdo desejava e que permitiam
diversas configuracdes para estar de acordo com as necessidades da organizagao

84

apos ler as informacdes que o0 sistema possuia em seu site e testar o sistema em seu

ambiente. O sistema apresenta as seguintes caracteristicas técnicas

Outras informagdes

e O sistema é open source

e O paradigma do sistema Orientado a Objetos.

e O sistema € uma aplicacdo web, utilizando o framework ASP.NET MVC que utiliza
a linguagem C#.

e O sistema utiliza um banco de dados relacional, criado na tecnologia SQL 2008
R2.

¢ O sistema, é hospedado no servidor IIS.
e Como artefatos do sistema, o desenvolvedor possui o cédigo fonte e o script de
criacdo do esquema SQL do banco de dados

2 Stakeholders e preocupacdes

Este capitulo contém informacdes apresentando as partes interessadas da
arquitetura, suas respectivas preocupacoes, e a rastreabilidade das preocupacdes

com as partes interessadas.

2.1 Stakeholders

Os Stakeholders deste projeto séo:

Desenvolvedores do Sistema;
Analistas do sistema

Analistas de manutencao do sistema
Arquiteto de software

Dono do projeto

2.2 Preocupacdes

Identificar as entidades de dominio do sistema
Identificar e entender as funcionalidades do Sistema
Mapear as caracteristicas do sistema

Entender a estrutura e comportamento do Sistema

e Modificar, adaptar ou evoluir o Sistema
e Realizar manutencdes no Sistema

2.3 Traceabilidade Preocupagbes — Stakeholders

85

Preocupacodes Equipe de | Cliente do
desenvolvimento projeto

Entender as funcionalidades do X X

Sistema

Mapear das caracteristicas do X X

sistema

Entender a estrutura e X -

comportamento do Sistema

Modificar, adaptar ou evoluir o X -

Sistema

Realizar manutencdes no Sistema X -

86

3 Pontos de vista

3.1 Ponto de vista Computacional

3.2 Visao Geral

3.3 Preocupacgdes e Stakeholders

3.3.1 Preocupacoes

Mapear as caracteristicas do sistema

Entender a estrutura e comportamento do Sistema
Modificar, adaptar ou evoluir o Sistema

Realizar manutengdes no Sistema

3.3.2 Stakeholders tipicos

Desenvolvedores do Sistema;
Analistas do sistema

Analistas de manutencao do sistema
Arquiteto de software

3.4 Tipos de modelos

3.5 Modelo de objetos
O modelo de objetos apresenta de forma geral, quais sdo os objetos computacionais

especificados.

3.5.1 Convencgdes do modelo de objetos
As convencdes deste modelo sdo baseadas na norma ISO 19793 UML4ODP ou Use
of Uml for ODP

3.6 Modelo de interfaces

O modelo de interfaces, apresenta quais interfaces os objetos computacionais

possuem e como eles estéo relacionados.

87

3.6.1 Convencdes do modelo de interfaces
As convencgdes deste modelo sdo baseadas na norma ISO 19793 UML40ODP ou Use
of Uml for ODP

3.7 Modelo de assinaturas de interface

O modelo de assinatura de interfaces, representa quais assinaturas cada interface
possui, mostrando quais o0s contratos ou funcbes que cada interface oferece,

detalhando as interfaces especificadas no modelo de template de interfaces

3.7.1 Convencgdes do modelo de assinaturas de interface
As convencgdes deste modelo sdo baseadas na norma ISO 19793 UML40ODP ou Use
of Uml for ODP

3.8 Modelo de tipos de dados

O modelo de tipos de dados apresenta a estrutura e conteddo dos objetos que séo
manipulados através das interfaces e funcionalidades especificadas no ponto de vista

computacional.

3.8.1 Convencdes do modelo de tipos de dados
As convencodes deste modelo sao baseadas na norma ISO 19793 UML40ODP ou Use
of Uml for ODP

3.9 Notas

4 Visoes

4.1 Visao: Computacéo

Arquitetura Ecommerce

User

Objetos Humanos

N\

AN

Apresentacio
«<<CV _Object>=»

Customerinterfac

| |

1 Anli -

a<<C\V_Objects plicacao
CustomerController
|

A
\x\\

«CV_Objects
CustomerService

\ Persistencia

«CV_Objects
AddressService

88

4.1.1 Modelos

1]

Template de objetos |

1

Especificacdo visido computacio

1

Template de interfaces |

Assinaturass de interfaces

Tipos de dados |

4.1.2 Modelo de objetos

w<<CV_Object=>»
CustomerController

w<<(CV_ Object=>»
AddressService

Template de objetos

w<<CVY Object=>»
CustomerService

89

4.1.3 Modelo de interfaces

Template de interfaces

«CV_Interface»

ICustomerControll

«CV_Interface»
ICustomerService

«CV_Interface»
lAddressSerivce

4.1.4 Modelo de tipos de dados

Tipos de dados

«CV_DataTypes
Address

«CV_DataType=
Customer

+Id: int

+Firsthame: String
+LastMame: String
+Email: String
+Company: String
+Countryld: int
+5StateProvinceld: int
+City: string
+Address1: string
+AddressZ: string
+ZipPostalCode: string
+PhoneMumber: string
+FaxMumber: String
+CustomAttributes: String
+CreatedOnlUtc: string

+Id: int

+CustomerGuid: string
+Username: string

+Email: string

+Password: string
+PasswordFormat: int
+PasswordSalt: string
+AdminComment: string
+|sTaxExempt: boolean
+Affiliatedld: int

+Vendorld: int
+HasShoppingCart: boolean
+Active: boolean

+Deleted: boolean
+|sSystemAccount: boolean

+SystemMame: string
+LastlpAddress: string
+CreatedOnUtc: datetime
+LastloginDateltc: datetime
+LastActivityDatelUtc: datetime
+BillingAddress: int
+ShippingAddressid: int

90

4.1.5 Modelo de assinaturas de interface

Assinaturass de interfaces

«CV_InterfaceOperationSignatures
CustomerController

«CV_InterfaceOperationSignatures
CustomerService

Addresses()

AddressDelete(int addressld)
AddressAdd(CustomerAddressEditModel model)
AddressEdit{CustomerAddressEditModel model, int addressld)

«CV_InterfaceOperationSignatures
AddressService

DeleteAddress{Address address)
GetAddressTotalByStateProvinceld(int stateProvinceld)
GetAddressByld(int addressld)

InsertAddress(Address address)
UpdateAddress(Address address)
IsAddressValid{Address address)

GetAllCustomers(DateTime? createdFromUtc = null, DateTime?
createdToUtc = null, int affiliateld = 0, int vendorld = 0, int[]
customerRolelds = null, string email = null, string username = null, string
firstName = null, string lastName = null, int dayOfBirth = 0, int
monthOfBirth = 0, string company = null, string phone = null, string
zipPostalCode = null, bool loadOnlyWithShoppingCart = false,
Sﬁu pingCartType? sct = null, int pagelndex = 0, int pageSize =
214?483%4?)
GethllCustomersByPasswordFormat(PasswordFormat passwordFormat)
GetOnlineCustomers()

DeleteCustomer(Customer customer)

GetCustomerByld(int customerld)

GetCustomerByGuid(Guid customerGuid)
GetCustomerByEmail(string email)
GetCustomerBySystemMName(string systemMName)
GetCustomerByUsername(string usermame)
InsertGuestCustomer()

InsertCustomer(Customer customer)

ResetCheckoutData()

DeleteGuestCustomers(DateTime? createdFromUtc, DateTime?
createdToUtc, bool onlyWithoutShoppingCart, int
maxMumberOfRecordsToDelete)
DeleteCustomerRole(CustomerRole customerRole)
GetCustomerRoleByld(int customerRoleld)
GetCustomerRoleBySystemMName(string systemMName)
GetAllCustomerRoles(bool showHidden = false)
InsertCustomerRole(CustomerRole customerRole)
UpdateCustomerRole(CustomerRole customerRole)

91

4.1.6 Comportamento da assinatura de interface (AddressAdd)

<<CV_Object>>

Custommer
Controller

<<CV_Object>>
CustomerService

92

»_

if

CurrentCustomer.IsRegistred()
< -Return(Unauthorized)- -

<<CV_Object>>
CountryService

if

<Return (CustomerAddress)—

ModelState.IsV3l

()

—T——UpdateCostumer(Costumer)

<< —-Return(model)— —

PrepareModel()
-~

getAllCountries()

93

REFERENCIAS BIBLIOGRAFICAS

BORSOI, B. Arquitetura de processo aplicada na integracdo de fabricas de
software. Tese (doutorado em engenharia elétrica) — Universidade de Sao Paulo.
2008.

BREIVOLD, H.; CRNKOVIC, L.; LARSSON, M. A Systematic Review of Software

Architecture Evolution Research. 2011.

CHADHA, D. Emergence of Software Product Line. International Journal of
Computer Applications® (IJCA). 2012

DIAS, L.D. Método de instanciacdo de uma arquitetura de processos aplicado em
fabrica de software. Dissertacao (Mestrado em Engenharia Elétrica) — Universidade
de S&o Paulo. 2010

DING, W.; et al. How Do Open Source Communities Document Software
Architecture: An Exploratory Survey. Engineering of Complex Computer Systems
(ICECCS). 2014

Information technology — Open Distributed Processing — Use of UML for ODP system
specifications. ISO/IEC/IEEE 19793. 2015.

KILOV, H. et al. The Reference Model of Open Distributed Processing:
Foundations, experience and applications. Computer Standards & Interfaces. v. 35.
2012

LAGUNA, M.A.; HERNANDEZ, C. A Software Product Line Approach for E-
Commerce Systems. E-Business Engineering (ICEBE). 2010.

LININGTON, P.; MILOSEVIC, Z.; TANAKA, A.; VALLECILLO, A. Building Enterprise
Systems with ODP — An Introduction to Open Distributed Processing. Boca
Raton: Chapman and Hall/CRC. 2011.

PEREIRA, C.; MARTINEZ, L.; FAVRE, L. Recovering Use Case Diagrams from
Object Oriented Code: an MDA-based Approach. Information Technology: New
Generations (ITNG), 2011

RAMANATHAN, S.; HODGES, J. Reverse Engineering Relational Schemas to
Object-Oriented Schemas. 1996.

94

ROZANSKI, N.; WOODS E. Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives. Boston: AddisonWesley. 2005.

ROMERO, J.R.; VALLECILLO, A. Modeling the ODP Computational Viewpoint with
UML 2.0: The Templeman Library Example. Enschede: Workshop on ODP for
Enterprise Computing. 2005

Systems and Software Engineering -- Architecture Description. ISO/IEC/ IEEE 42010.
2011.

Software Engineering & Software Life Cycle Processes & Maintenance. ISO/IEC

14794. 2006.

TONELLA, P. Reverse Engineering of Object Oriented Code. ICSE '05 Proceedings
of the 27th international conference on Software engineering. 2005.

TRIPATHY, P.; NAIK, K. Software Evolution and Maintenance: a practitioner’s
approach. Hoboken: John Wiley & Sons, Inc. 2014.

